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CHAPTER 1

Introduction

Debris flows are flows of water-saturated slurry mixtures [37, 52, 62]). Examples
are mud slides initiated by heavy rainfall on eroded mountain sides consisting
of mixtures of rock, sand and mud; and volcanic debris flows in which the flow
may be a mixture of volcanic debris and water (see Fig. 1a). These flows often
cause major destruction to buildings and infrastructure, with accompanying
loss of human lives. In industrial applications, dense liquid-solid flows, such
as slurry flows, are used in pipeline transportation (see Fig. 1b). This form
of transportation has relatively low operation and maintenance costs, and is
friendly to the environment [48]. Other applications occur for instance in liquid
fluidized beds [38].

The first objective of the research in this thesis is to be able to solve hy-
drodynamic models of two-phase flows which describe the motion of the above
mentioned debris flows. These models contain many interesting aspects, e.g.,
the presence of nonconservative products, stiff source terms and flows with free-
surfaces. In this thesis we will provide some of the tools necessary for solving
these models by space- and/or space-time discontinuous Galerkin (DG) finite
element methods.

The second objective of this thesis is to develop fast multigrid methods for
the solution of the algebraic system of equations originating from the space-time
DG discretization. In particular for higher order accurate DG discretizations of
practical problems, a significant improvement in computational performance is
essential. In the next sections we will discuss the main topics in more detail.
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(a) The lahar developed on the slopes of
Santiaguito volcano [33]. Photograph cour-
tesy of U.S. Geological Survey.

(b) Slurry and sediment transport in
pipelines. Photograph courtesy of LI-
Cengineering [34].

Figure 1.1: Examples of two-phase flows.

Nonconservative products. We are interested in solving dispersed two-phase
two-fluid models. The use of a discontinuous Galerkin (DG) method for these
problems is of interest because it can deal efficiently with unstructured and
deforming grids, local mesh refinement (h-adaptation), adjustment of the poly-
nomial order in each element (p-refinement), and parallel computation. These
benefits stem from the compact stencil used in DG methods, i.e., the solution
on an element depends only on the data of its immediate neighboring elements.
Furthermore, the DG finite element method easily deals with shocks and other
discontinuities in the solution. Dispersed two-phase two-fluid models contain,
however, nonconservative products which are introduced in the governing equa-
tions in the modeling procedure [22, 23]. This poses serious problems which
motivated the research in Chapters 2 and 3 to present a way to genuinely deal
with nonconservative products in a DG finite element context.

Systems of equations containing nonconservative products cannot be trans-
formed into divergence form, i.e., equations of the form ∂tu+∂xf(u)+g(u)∂xu =
0 cannot be written as ∂tu+∂xh(u) = 0. This causes problems once the solution
becomes discontinuous, since the weak solution in the classical sense of distri-
butions then does not exist. Consequently, no classical Rankine-Hugoniot shock
conditions can be defined. To overcome these problems we use the theory of
Dal Maso, LeFloch and Murat (DLM) [54] for nonconservative products. In this
theory a definition is given for nonconservative products of the type g(u)∂xu,
where g : Rm → Rm is a smooth function, but u :]a, b[→ Rm may admit dis-
continuities. Using this theory, a notion of a weak solution can be given to
the Riemann problem for nonconservative hyperbolic partial differential equa-
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tions. In Chapter 2 we will use the DLM theory to propose a new discontinuous
Galerkin (DG) finite element method suitable for hyperbolic partial differential
equations in nonconservative form. A problem with the DLM theory is, how-
ever, the introduction of a path in phase space connecting the left and right
state across a discontinuity. It is possible to derive an expression for this path
by constructing entropy solutions to the nonconservative hyperbolic equations
(see LeFloch [46]), but this construction can be a very difficult as well as costly
job. In Chapter 3 we will therefore investigate the influence of this path in phase
space on the numerical solution.

Over the years several authors have been developing numerical methods
suitable for nonconservative hyperbolic partial differential equations with non-
smooth solutions. Toumi [75] introduced a generalized Roe solver based on the
DLM theory, which was later applied by Toumi and Kumbaro [76] to shock
tube problems and two-fluid problems. The work by Toumi [75] was also used
by Parés [57], Castro, Gallardo and Parés [14] and Parés and Castro [58] to
develop numerical schemes in the finite volume context. Alternative approaches
in which the DLM theory is not used are followed by Saurel and Abgrall [66]
and Xing and Shu [87]. The latter work considers high order well-balanced finite
volume WENO and Runge-Kutta discontinuous Galerkin methods for systems
containing nonconservative products. The schemes of Xing and Shu are de-
signed such that they exactly maintain the balance laws at the discrete level for
certain steady state solutions. In Chapter 2 we use the DLM theory in a DG
finite element context to give the nonconservative products a proper definition
at locations where discontinuities are present. This work differs from the previ-
ously mentioned works in that we do not formulate a weak formulation based
on generalized Roe solvers. Instead, we present and use a new numerical flux in
the context of the DLM theory.

Depth-averaged two-phase flows. In many flows the height H of the flow
is much smaller than the length L of the flow, H/L ≪ 1. For these flows,
depth-averaging techniques are commonly used to simplify the three dimen-
sional equations. Examples include the shallow water equations derived from
the incompressible Navier-Stokes equations or the Savage-Hutter equations for
dry granular flow [67]. Recently, Pitman and Le [62] and Le [45] derived a
depth-averaged model for two-phase flows based on a three dimensional contin-
uum model for two-phase flows as derived by Jackson [38] (see Appendix B for
the three dimensional continuum model). We remark, however, that with the
assumptions made in the depth-averaging process by Le [45], the same depth-
averaged model can be derived from the three dimensional model of Drew and
Lahey [22]. In Chapter 4 we have slightly extended the depth-averaged model
by also including extra friction terms to simulate turbulent friction and we



4 Chapter 1: Introduction

present a discontinuous Galerkin finite element method for the depth-averaged
two-phase flow model.

Much of the research conducted with depth averaged models for liquid-solid
flows focuses on correctly predicting the final depositions of debris avalanches
and their behavior over natural terrains (Denlinger and Iverson [20], Patra et
al. [60, 59], Pouliquen and Forterre [63], Tai et al. [70], Wang et al. [83]). In
Chiou et al. [15] and Gray et al. [26] also the influence of obstacles on granular
flows is investigated. We are, however, interested in the behavior of debris flows
through contractions and in Chapter 4 we will perturb a steady-state two-phase
flow with a low particle volume fraction by introducing an upstream avalanche
of particles for a short period, thus temporarily increasing the particle volume
fraction. This experiment was done by Akers and Bokhove [2] (see Fig. 1.2) and
we use this experiment to qualitatively validate the depth-averaged two-phase
flow model.

Multigrid. The space-time DG method is implicit in time and requires the
solution of a system of algebraic equations at each time step. To solve this
system we consider multigrid techniques, which are very efficient and versatile
techniques for the solution of large systems of (non)linear algebraic equations.
During the past decades many different multigrid algorithms have been devel-
oped and applied to a wide variety of problems. Furthermore, an extensive
mathematical analysis has been conducted for many multigrid algorithms re-
sulting in detailed knowledge about the design of optimal multigrid algorithms,
their performance and efficient implementation.

In this thesis we consider the use of a pseudo-time multigrid technique origi-
nally developed by Jameson [39] and further extended in [55]. This method was
applied in the early 2000’s in a space-time DG context in [79] for second order
accurate discretizations of the Euler equations and has been a preferred method
to solve space-time DG discretizations since [4, 40, 41, 42, 61, 64]. Our objective
is to improve this method for higher order space-time DG discretizations since
it preserves the locality of the DG scheme and is very useful in a FAS multigrid
scheme for nonlinear problems.

The main components in a multigrid algorithm are an iterative method and
coarsened approximations of the algebraic system. In addition, restriction and
prolongation operators are necessary to connect the various approximations of
the algebraic system. In case of partial differential equations the coarsened al-
gebraic systems can be obtained by either discretizing the equations on coarser
meshes, resulting in h-multigrid algorithms [30, 42, 80, 79], or by using dis-
cretizations with different orders of accuracy, which give p-multigrid meth-
ods [9, 24, 50, 53]. Of course combinations of both techniques are possible,
resulting in hp-multigrid methods [56, 68]. In Chapter 5 we will consider h-
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Figure 1.2: When water flow enters a contraction at a certain speed, a steady
state in the contraction is reached with oblique hydraulic jumps (top left). This
steady-state is perturbed by an upstream avalanche of polystyrene beads (just
inserted in the top middle frame). There is a transition period in the top right,
bottom left and bottom middle frames in which one second elapses between each
frame. A second steady state, an upstream steady shock, is reached (bottom
right) [2].

multigrid methods while in Chapter 6 we discuss some preliminary results using
also p- and hp-multigrid.

The design of the iterative method (also known as a smoother) and the re-
striction and prolongation operators are crucial for multigrid performance. Also,
the coarsening of the algebraic system can have a significant impact. For lin-
ear problems discrete Fourier analysis can provide detailed information on these
aspects. This is achieved by analyzing the full two- or three-level multigrid algo-
rithm. Due to its complexity, the analysis of multigrid algorithms is frequently
restricted to two-level analysis, or even the simpler analysis of only the multi-
grid smoother. For many problems this results in a rather poor prediction of
the actual multigrid performance. It is therefore important to consider realistic



6 Chapter 1: Introduction

model problems and extend the analysis to three grid levels. This can signif-
icantly enhance the accuracy of the analysis and is essential when optimizing
the multigrid algorithm, see e.g. [86].

The h-multigrid algorithm using a pseudo-time integration method discussed
in this thesis was originally developed in [42, 79] for second order accurate space-
time DG discretizations of the compressible Euler and Navier-Stokes equations.
The algorithm is easy to implement and parallelize, even on locally refined
meshes, and is insensitive to initial conditions. For higher order accurate DG
discretizations the multigrid performance was, however, not satisfactory. In
Chapter 5 we therefore discuss the analysis of the h-multigrid algorithm and
demonstrate how the multigrid performance for higher order DG discretizations
can be improved.

In Chapter 5 we perform a two- and three-level Fourier analysis for space-
time DG discretizations of a linear PDE. To better approximate “real” problems,
such as the compressible Navier-Stokes equations, we consider the 2D advection-
diffusion equation instead of the 1D model problem as was done in [42]. The
Fourier analysis then serves as a tool to optimize our h-multigrid algorithms.
In [79], an explicit Runge-Kutta time integrator was optimized for single-grid
1D computations. This Runge-Kutta scheme was used as a smoother in the
h-multigrid algorithm without further modifications. In Chapter 5 we optimize
explicit Runge-Kutta smoothers in combination with the three-level h-multigrid
algorithm. This combined optimization process should result in a significantly
improved algorithm. The optimization is performed for a three-level h-multigrid
algorithm for the solution of the 2D advection-diffusion equation discretized with
a second or third order accurate space-time DG discretization.

It is known that multigrid methods converge slowly on grids with high aspect
ratio cells. High aspect ratio cells cause a strong coupling in one direction
and a weak coupling in other directions, see e.g. [77]. Different techniques are
proposed in the literature to tackle this problem, e.g. semi-coarsening and line
implicit smoothing. Both, however, become impractical for three dimensional
computations on unstructured grids. In order to address this problem, recently,
Lucas et al. [49] proposed a Newton linearization in combination with a Krylov
subspace technique for unsteady flow computations. To maintain the locality of
the discontinuous Galerkin discretization, we prefer however the use of pseudo-
time integration methods using explicit Runge-Kutta time integrators. In order
to reduce the stiffness of the discretization introduced by the high aspect ratio
cells, we have derived a rescaling in Chapter 5 to be added to the pseudo-time
algorithm. By investigating how the scaling of the discretization changes on
high and low aspect ratio cells, a rescaling can be derived to better balance the
discretizations in all directions. A similar argument holds for the change from
inviscid to viscous flows in a boundary layer.
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In Chapter 6 we perform a three-level Fourier analysis of h-, p- and hp-
multigrid techniques applied again to the 2D advection-diffusion equation. We
test the multigrid schemes then through the computation of inviscid flow over
a NACA0012 airfoil, solving the Euler equations of gas dynamics. We found
that the choice of the basis functions in the numerical simulations has a large
effect on the stability of the computations. In order to investigate this, we have
calculated the spectrum of a third order accurate space-time DG discretization
for the 2D Euler equations for the flow over a NACA0012 airfoil. This provided
useful information on the best choice of basis functions.

An alternative derivation. Many partial differential equations describing
fluid flow contain second (and higher) order derivatives. Obtaining a DG dis-
cretization for these higher order derivatives is non-trivial and many different
DG methods exist to deal with these terms. Even for first order partial dif-
ferential equations there are some issues regarding the derivation of the DG
weak formulation. In Chapter 7 we aim at a mathematically more consistent
derivation of DG discretizations. This derivation is different from the classical
derivation in that we introduce generalized DG derivatives based on bounded
Borel measures. On element boundaries the generalized DG derivative is well
defined despite the discontinuity in the numerical approximation at the element
faces. Using this alternative approach we recover the standard weak formula-
tion for hyperbolic partial differential equations (PDE’s). For parabolic and
elliptic PDE’s, two DG formulations can be obtained, a new weak formulation
and the weak formulation proposed by Brezzi et al. [13]. Numerical simulations
are conducted to compare both weak formulations.

Outline. In Chapter 2 we derive the space-time DG finite element formula-
tion for nonconservative partial differential equations and state the space DG
finite element formulation as a special case in Appendix A. In DG methods, the
numerical flux plays an essential role. In Chapter 2 we therefore also derive a
numerical flux for systems with nonconservative products (NCP-flux) which can
also be applied to moving grids.

We apply the DG finite element method to two depth-averaged and dispersed
multiphase systems in Chapter 3 and show numerical results using a linear path
in phase space. We then investigate the effect of the different paths in phase
space on the numerical solution.

In Chapter 4 we present a discontinuous Galerkin finite element method for
the depth-averaged two-phase flow model as derived by Pitman and Le [62] and
Le [45]. We numerically verify and validate the method and the model. The
DG method does not guarantee monotone solutions around discontinuities and
sharp gradients and thus numerical oscillations can develop. To prevent these
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numerical oscillations we investigate and clarify the WENO slope limiter given
in [51] in combination with Krivodonova’s discontinuity detector [43].

Space-time DG methods of partial differential equations result in large sys-
tems of algebraic equations that need to be solved at each time-step. To effi-
ciently solve these systems, we combine pseudo-time integration methods with
multigrid techniques. In Chapter 5, a two- and three-level Fourier analysis of the
multigrid algorithms is conducted. The Fourier analysis provides the spectral
radius of the multigrid algorithm which gives a prediction of the asymptotic rate
of convergence of the multigrid method. We optimize the h-multigrid method
by minimizing the spectral radius. In Chapter 6 we further analyze p- and
hp-multigrid using Fourier analysis and perform “real-life” simulations.

An alternative derivation of the discontinuous Galerkin (DG) finite element
weak formulation is given in Chapter 7. We introduce generalized DG deriva-
tives based on Borel measures which lead to a mathematically more consistent
derivation. We compare numerical results of a new DG weak formulation for
higher-order derivatives with the well known method of Brezzi et al. [13]. For
this we consider the compressible Navier-Stokes equations in which we simulate
viscous flow past a cylinder and a NACA0012 airfoil. Conclusions are drawn in
Chapter 8.



CHAPTER 2

Discontinuous Galerkin finite element methods
for hyperbolic nonconservative partial

differential equations: Theory

In this chapter we present a discontinuous Galerkin finite element (DGFEM) formu-

lation for systems containing nonconservative products, such as occur in dispersed

multiphase flow equations. The main criterium we pose on the weak formulation is

that if the system of nonconservative partial differential equations can be transformed

into conservative form, then the formulation must reduce to that for conservative sys-

tems. Standard DGFEM formulations cannot be applied to nonconservative systems

of partial differential equations. We therefore introduce the theory of weak solutions

for nonconservative products into the DGFEM formulation. We also introduce a new

numerical flux that is able to deal with nonconservative products.

2.1 Nonconservative hyperbolic partial differen-
tial equations

The main topic of this chapter is the derivation of a formulation for DGFEM
suitable for nonlinear hyperbolic partial differential equations in nonconservative
form. We use the theory of Dal Maso, LeFloch and Murat (DLM) [54] to
overcome the absence of a weak solution in the classical sense of distributions
for these types of equations. In an article by Dal Maso, LeFloch and Murat [54],
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a definition was given for nonconservative products of the form g(u)∂xu, where
g : Rm → Rm is a smooth function, but u :]a, b[→ Rm may admit discontinuities.
They assumed u to be a function of bounded variation (BV), viz. a Lebesgue
integrable function whose first derivative is a bounded Borel measure, and the
product g(u)∂xu is defined as a Borel measure on ]a, b[. Such a definition is
necessary when g is not the differential of a smooth function q, i.e., there is no
q such that g(u)∂xu admits a conservative form ∂xq. The following example,
given by LeFloch [46], illustrates the DLM theory.

Consider the function u(x) composed of two constant vectors uL and uR in
Rm with uL 6= uR:

u(x) = uL + H(x − xd)(uR − uL), x ∈]a, b[, (2.1)

where xd ∈]a, b[ and H : R → R is the Heaviside function with H(x) = 0 if
x < 0 and H(x) = 1 if x > 0. Consider any smooth function g : Rm → Rm. We
see immediately that g(u)∂xu is not defined at x = xd since here |∂xu| → ∞.
Dal Maso, LeFloch and Murat [54] introduce therefore a smooth regularization
uε of the discontinuous function u. They show that in this particular case, if
the total variation of uε remains uniformly bounded with respect to ε:

g(u)
du

dx
≡ lim

ε→0
g
(
uε

)duε

dx

gives a sense to the nonconservative product as a bounded measure. This limit,
however, depends on how we choose uε. Introduce a Lipschitz continuous path
φ : [0, 1] → Rm, satisfying φ(0) = uL and φ(1) = uR, connecting uL and uR in
Rm. The following regularization uε for u then emerges:

uε(x) =





uL, if x ∈]a, xd − ε[

φ(x−xd+ε
2ε ), if x ∈]xd − ε, xd + ε[ ε > 0.

uR, if x ∈]xd + ε, b[

(2.2)

Using this regularization, LeFloch [46] states that when ε tends to zero, then:

g(uε)
duε

dx
→ Cδxd

, with C =

∫ 1

0

g(φ(τ))
dφ

dτ
(τ) dτ,

vaguely in the sense of measures on ]a, b[, where δxd
is the Dirac measure at

xd. We see that the limit of g(uε)∂xuε depends on φ. There is one exception,
namely if a q : Rm → R exists with g = ∂uq. In this case C = q(uR) − q(uL).
We are, however, interested in the case when such a function q does not exist.
We then see that the definition of the nonconservative product g(u)∂xu must
depend on the path φ chosen in the regularization. In Section 3.3, we will
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investigate the effect of different paths φ on the numerical solution. For now,
assume that the path φ is given. In Dal Maso, LeFloch and Murat [54] it is
assumed that the path belongs to a fixed family of paths in Rm. These paths
are Lipschitz continuous maps φ : [0, 1] × Rm × Rm → Rm which satisfy the
following properties:

(H1) φ(0;uL, uR) = uL, φ(1;uL, uR) = uR,

(H2) φ(τ ;uL, uL) = uL,

(H3)
∣∣∂φ

∂τ (τ ;uL, uR)
∣∣ ≤ K|uL − uR|, a.e. in [0, 1].

Dal Maso, LeFloch and Murat [54] consider functions u :]a, b[→ Rm of bounded
variation, viz. u ∈ BV (]a, b[, Rm). These are functions of L1(]a, b[, Rm) whose
first order derivative is a bounded Borel measure on the interval ]a, b[. Since u is
BV, u admits a countable set of discontinuity points and at each such point xd,
a left trace uL = limε↓0 u(xd − ε) and a right trace uR = limε↓0 u(xd + ε) exist.
For more on Borel measures, BV functions and related topics, see, e.g., [89].

Based on the family of paths satisfying (H1)-(H3), the following theorem is
given by Dal Maso, LeFloch and Murat [54]:

Theorem 2.1.1. Let u :]a, b[→ Rm be a function of bounded variation and
g : Rm → Rm be a continuous function. Then, there exists a unique real-valued
bounded Borel measure µ on ]a, b[ characterized by the two following properties:

1. If u is continuous on a Borel set B ⊂]a, b[, then:

µ(B) =

∫

B

g(u)
du

dx
dλ,

where λ is the Borel measure.

2. If u is discontinuous at a point xd of ]a, b[, then:

µ({xd}) =

∫ 1

0

g(φ(τ ;uL, uR))
∂φ

∂τ
(τ ;uL, uR) dτ.

By definition, this measure µ is the nonconservative product of g(u) by ∂xu and
is denoted by µ =

[
g(u)du

dx

]
φ
.

In this chapter we will derive a space-time DGFEM weak formulation for
nonlinear hyperbolic systems of partial differential equations in nonconservative
form in multi-dimensions:

Ui,0 + Fik,k + GikrUr,k = 0, x̄ ∈ Rq, t > 0, (2.3)
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with U ∈ Rm, F ∈ Rm × Rq, G ∈ Rm × Rq × Rm; we use the comma notation
to denote partial differentiation and the summation convention on repeated
indices. Here, (·),0 denotes partial differentiation with respect to time and (·),k

(k = 1, . . . , q) partial differentiation with respect to the spatial coordinates.
In a space-time context, space and time variables are, however, not explicitly
distinguished. A point at time t = x0 with position x̄ = (x1, x2, ..., xq) has
Cartesian coordinates x = (x0, x̄) ∈ Rq+1. We can write (2.3) then as:

TikrUr,k = 0, x ∈ Rq+1, x0 > 0, k = 0, 1, 2, ..., q, (2.4)

with U ∈ Rm and T ∈ Rm × Rq+1 × Rm given by:

Tikr =

{
δir, if k = 0,

Dikr, otherwise,
(2.5)

where δ represents the Kronecker delta symbol and where Dikr = ∂Fik/∂Ur +
Gikr. Dal Maso, LeFloch and Murat [54] give a similar theorem to Theorem 2.1.1
for the nonconservative term TikrUr,k in multi-dimensions. As before, assume
a given family of Lipschitz continuous paths φ : [0, 1] × Rm × Rm → Rm that
satisfy, for some K > 0 and for all UL, UR ∈ Rm and τ ∈ [0, 1], the properties:

(H1) φr(0;UL, UR) = UL
r , φr(1;UL, UR) = UR

r ,

(H2) φr(τ ;UL, UL) = UL
r ,

(H3)
∣∣∂φr

∂τ (τ ;UL, UR)
∣∣ ≤ K|UL

r − UR
r |, a.e. in [0, 1],

(H4) φr(τ ;UL, UR) = φr(1 − τ ;UR, UL).

Note that property H4 has been added, which does not have to be satisfied in
the one dimensional case. Let Ω ⊂ Rq+1 with Ω = Ωu ∪ Su ∪ Iu where Ωu is
the set of points of approximate continuity, Su the set of points of approximate
jump and Iu contains the irregular points. The DLM theorem then states:

Theorem 2.1.2. Let U : Ω → Rm be a bounded function of bounded variation
defined on an open subset Ω of Rq+1 and T : Rm → Rm be a locally bounded
Borel function. Then there exists a unique family of real-valued bounded Borel
measures µi on Ω, i = 1, 2, ...,m such that

1. if B is a Borel subset of Ωu, then:

µi(B) =

∫

B

TikrUr,k dλ, (2.6)

where λ is the Borel measure;
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2. if B is a Borel subset of Su, then:

µi(B) =

∫

B∩Su

∫ 1

0

Tikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ nL

k dHq, (2.7)

with UL and UR the left and right traces at the discontinuity, where Hq

denotes the q-dimensional Hausdorff measure and where we choose nL the
outward normal with respect to the left state;

3. if B is a Borel subset of Iu, then µi(B) = 0.

The measure µi is the nonconservative product of Tikr by Ur,k, denoted by:

µi =
[
TikrUr,k

]
φ
. (2.8)

In particular, a piecewise C1 function U is a weak solution of (2.4) if and
only if the following two conditions are satisfied [14]:

1. U is a classical solution in the domains where it is C1.

2. At a discontinuity U satisfies the generalized Rankine-Hugoniot condi-
tions:

− σ(UR
i − UL

i ) + Fik(UR)n̄L
k − Fik(UL)n̄L

k +
∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k = 0, (2.9)

where σ is the speed of propagation of the discontinuity, UL and UR are
the left and right limits of the solution at the discontinuity and n̄L is the
space component of the space-time normal nL (see e.g. LeFloch [46]).

When G(U) is the Jacobian of some flux function Q(U), jump conditions (2.9)
are independent of the path and reduce to the Rankine-Hugoniot condition:

Hik(UR)n̄L
k − Hik(UL)n̄L

k = σ(UR
i − UL

i ), (2.10)

where H = F + Q.

2.2 Space-time DGFEM discretization

In this section we will introduce the formulation for space-time DGFEM for
systems of hyperbolic partial differential equations containing nonconservative
products. We will start by introducing space-time elements, function spaces,
trace operators and basis functions, after which we derive the space-time DG
formulation. In Appendix A we also give the formulation for space DGFEM.
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2.2.1 Space-time elements

In the space-time DGFEM method, the space and time variables are not dis-
tinguished. A point at time t = x0 with position vector x̄ = (x1, x2, ..., xq) has
Cartesian coordinates (x0, x̄) in the open domain E ⊂ Rq+1. At time t, the flow
domain Ω(t) is defined as:

Ω(t) := {x̄ ∈ Rq : (t, x̄) ∈ E}.

By taking t0 and T as the initial and final time of the evolution of the space-time
flow domain, the space-time domain boundary ∂E consists of the hyper-surfaces:

Ω(t0) := {x ∈ ∂E : x0 = t0},
Ω(T ) := {x ∈ ∂E : x0 = T},

Q := {x ∈ ∂E : t0 < x0 < T}.

The time interval [t0, T ] is partitioned using the time levels t0 < t1 < ... < T ,
where the n-th time interval is defined as In = (tn, tn+1) with length ∆tn =
tn+1 − tn. The space-time domain E is then divided into Nt space-time slabs
En = E ∩ In. Each space-time slab En is bounded by Ω(tn), Ω(tn+1) and
Qn = ∂En/(Ω(tn) ∪ Ω(tn+1)).

The flow domain Ω(tn) is approximated by Ωh(tn), where Ωh(t) → Ω(t) as
h → 0, with h the radius of the smallest sphere completely containing the largest
space-time element. The domain Ωh(tn) is divided into Nn non-overlapping
spatial elements Kj(tn). Similarly, Ω(tn+1) is approximated by Ωh(tn+1). We

can relate each element Kn
j = Kj(tn) to a master element K̂ ⊂ Rq through the

mapping Fn
K :

Fn
K : K̂ → Kn

j : ξ̄ 7→ x̄ =
∑

i

xi(K
n
j )χi(ξ̄)

with xi the spatial coordinates of the vertices of the spatial element Kn
j and

χi the standard Lagrangian shape functions defined on element K̂. The space-
time elements Kn

j are constructed by connecting Kn
j with Kn+1

j using linear
interpolation in time, resulting in the mapping Gn

K from the master element

K̂ ⊂ Rq+1 to the space-time element Kn:

Gn
K : K̂ → Kn : ξ 7→ (t, x̄) =

(
1
2 (tn+1 + tn) + 1

2 (tn+1 − tn)ξ0,
1
2 (1 − ξ0)F

n
K(ξ̄) + 1

2 (1 + ξ0)F
n+1
K (ξ̄)

)
.

The tessellation T n
h of the space-time slab En

h consists of all space-time elements

Kn
j ; thus the tessellation Th of the discrete flow domain Eh := ∪Nt−1

n=0 En
h then is

defined as Th := ∪Nt−1
n=0 T n

h .



2.2 Space-time DGFEM discretization 15

The element boundary ∂Kn
j , which is the union of open faces of Kn

j , consists

of three parts: Kj(t
+
n ) = limǫ↓0 Kj(tn + ǫ), Kj(t

−
n+1) = limǫ↓0 Kj(tn+1 − ǫ) and

Qn
j = ∂Kn

j /(Kj(t
+
n )∪Kj(t

−
n+1)). Define the grid velocity v ∈ Rq as v = ∆x̄/∆t.

The outward space-time normal vector at an element boundary point on ∂Kn
j

is given by:

n =





(1, 0̄) at Kj(t
−
n+1),

(−1, 0̄) at Kj(t
+
n ),

(−vkn̄k, n̄) at Qn
j ,

(2.11)

where 0̄ ∈ Rq. Note that since the space-time normal vector n has length one,
the space component n̄ of the space-time normal has a length |n̄| = 1/

√
1 + v · v.

It can be convenient to split the element boundaries into separate faces. In
addition to the faces Kj(t

+
n ) and Kj(t

−
n+1), we also define therefore interior and

boundary faces. An interior face is shared by two neighboring elements Kn
i and

Kn
j , such that Sn

ij = Qn
i ∩Qn

j , and a boundary face is defined as Sn
Bj = ∂En∩Qn

j .
The set of interior faces in time slab In is denoted by Sn

I and the set of all
boundary faces by Sn

B . The total set of faces is denoted by Sn
I,B = Sn

I ∪ Sn
B .

2.2.2 Function spaces and trace operators

We consider approximations of U(x, t) and functions V (x, t) in the finite element
space Vh, which is defined as:

Vh =
{
V ∈ (L2(Eh))m : V |K ◦ GK ∈ (P p(K̂))m, ∀K ∈ Th

}
,

where L2(Eh) is the space of square integrable functions on Eh and P p(K̂) denotes
the space of polynomials of degree at most p on the reference element K̂. Here
m denotes the dimension of U .

We now introduce some operators as defined in Klaij et al. [41]. The trace
of a function f ∈ Vh at the element boundary ∂KL is defined as:

fL = lim
ǫ↓0

f(x − ǫnL),

with nL the unit outward space-time normal at ∂KL. When only the space
components of the outward normal vector are considered we will use the notation
n̄L. A function f ∈ Vh has a double valued trace at element boundaries ∂K.
The traces of a function f at an internal face S = K̄L ∩ K̄R are denoted by
fL and fR. The jump of f at an internal face S ∈ Sn

I in the direction k of a
Cartesian coordinate system is defined as:

[[f ]]k = fLn̄L
k + fRn̄R

k ,
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with n̄R
k = −n̄L

k . The average of f at S ∈ Sn
I is defined as:

{{f}} = 1
2 (fL + fR).

The jump operator satisfies the following product rule at S ∈ Sn
I for ∀g ∈ Vh

and ∀f ∈ Vh, which can be proven by direct verification:

[[gifik]]k = {{gi}}[[fik]]k + [[gi]]k{{fik}}. (2.12)

Consequently, we can relate element boundary integrals to face integrals:

∑

K∈T n
h

∫

Q

gL
i fL

ikn̄L
k dQ =

∑

S∈Sn
I

∫

S

[[gifik]]k dS +
∑

S∈Sn
B

∫

S

gL
i fL

ikn̄L
k dS. (2.13)

2.2.3 Weak formulation

In this section we derive a space-time DGFEM weak formulation for equations
containing nonconservative products. Before discussing the space-time DGFEM
weak formulation for equations containing nonconservative products, we first
introduce as a reference the space-time DGFEM weak formulation for equations
in conservative form (see, e.g., van der Vegt and van der Ven [79]).

Consider partial differential equations in conservative form:

Ui,0 + Hik,k = 0, x̄ ∈ Rq, x0 > 0, (2.14)

where U ∈ Rm and H ∈ Rm×Rq. Using the approach discussed in van der Vegt
and van der Ven [79], the space-time DG formulation for (2.14) can be stated
as:
Find a U ∈ Vh such that for all V ∈ Vh:

0 = −
∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,kHik

)
dK

+
∑

K∈T n
h

(∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UL

i dK

)

+
∑

S∈Sn
I

∫

S

(V L
i − V R

i ){{Hik − vkUi}}n̄L
k dS +

∑

S∈Sn
B

∫

S

V L
i

(
HL

ik − vkUL
i

)
n̄L

k dS.

(2.15)

Note that at this point no numerical fluxes have been introduced yet into the
DG formulation. We continue now with equations containing nonconservative
products. Let U ∈ Vh. We know that the numerical solution is continuous on an
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element and discontinuous across a face, so, using Theorem 2.1.2, U is a weak
solution to (2.4) if:

0 =

∫

Eh

Vi dµi (2.16)

=
∑

K∈Th

∫

K

Vi

(
Ui,0 + DikrUr,k

)
dK

+
∑

K∈Th

( ∫

K(t−n+1)

V̂i

(∫ 1

0

δir
∂φr

∂τ
(τ ;UL, UR) dτ nL

0

)
dK

+

∫

K(t+n )

V̂i

(∫ 1

0

δir
∂φr

∂τ
(τ ;UL, UR) dτ nL

0

)
dK

)

+
∑

S∈SI

∫

S

V̂i

( ∫ 1

0

Dikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

+

∫ 1

0

∂φi

∂τ
(τ ;UL, UR) dτ nL

0

)
dS (2.17)

=
∑

K∈Th

∫

K

Vi

(
Ui,0 + DikrUr,k

)
dK

+
∑

K∈Th

( ∫

K(t−n+1)

V̂i(U
R
i − UL

i )nL
0 dK +

∫

K(t+n )

V̂i(U
R
i − UL

i )nL
0 dK

)

+
∑

S∈SI

∫

S

V̂i

( ∫ 1

0

Dikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

− vkδir

∫ 1

0

∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS (2.18)

=
∑

K∈Th

∫

K

Vi

(
Ui,0 + DikrUr,k

)
dK

+
∑

K∈Th

( ∫

K(t−n+1)

V̂i(U
R
i − UL

i ) dK −
∫

K(t+n )

V̂i(U
R
i − UL

i ) dK

)

+
∑

S∈SI

∫

S

V̂i

( ∫ 1

0

Dikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS

+
∑

S∈SI

∫

S

V̂i[[vkUi]]k dS, (2.19)

where V ∈ Vh is an arbitrary test function. Furthermore, V̂ is the value (nu-
merical flux) of the test function V on a face S and δ represents the Kronecker
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delta symbol. In (2.19) we used the definition of nL
0 as given in (2.11). The

crucial point in obtaining the DG formulation is the choice of the numerical flux
for the test function V . Using Dikr = ∂Fik/∂Ur +Gikr, (2.19) can be rewritten
as:

0 =
∑

K∈Th

∫

K

Vi

(
Ui,0 + Fik,k + GikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−n+1)

V̂i(U
R
i − UL

i ) dK −
∫

K(t+n )

V̂i(U
R
i − UL

i ) dK

)

+
∑

S∈SI

∫

S

V̂i

(∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS

−
∑

S∈SI

∫

S

V̂i[[Fik − vkUi]]k dS.

(2.20)

We choose the numerical flux for V such that if there exists a Q, with Gikr =
∂Qik/∂Ur, then the DG formulation for the system containing nonconserva-
tive products reduces to the conservative space-time DGFEM weak formulation
given by (2.15) with Hik = Fik + Qik.

Theorem 2.2.1. If the numerical flux V̂ for the test function V in (2.20) is
defined as:

V̂ =

{
{{V }} at S ∈ SI ,

0 at K(tn) ⊂ Ωh(tn) ∀n,
(2.21)

then the DG formulation (2.20) will reduce to the conservative space-time DGFEM
formulation (2.15) when there exists a Q such that Gikr = ∂Qik/∂Ur so that
Hik = Fik + Qik.

Proof Assume there is a Q, such that Gikr = ∂Qik/∂Ur. We immediately
see that:

∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k = −[[Qik]]k. (2.22)
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Integrating by parts the volume integral in (2.20) and using (2.22) we obtain:

0 = −
∑

K∈Th

∫

K

(
Vi,0Ui + Vi,k(Fik + Qik)

)
dK

+
∑

K∈Th

∫

∂K

V L
i (UL

i nL
0 + (FL

ik + QL
ik)n̄L

k )d(∂K)

+
∑

K∈Th

( ∫

K(t−n+1)

V̂i(U
R
i − UL

i ) dK −
∫

K(t+n )

V̂i(U
R
i − UL

i ) dK

)

−
∑

S∈SI

∫

S

V̂i[[Fik + Qik − vkUi]]k dS.

(2.23)

We write Hik = Fik +Qik. Using the definition of the normal vector (2.11), the
element boundary integral in (2.23) becomes:

∑

K∈Th

∫

∂K

V L
i (UL

i nL
0 + HL

ikn̄L
k )d(∂K) =

∑

K∈Th

∫

Q

V L
i

(
HL

ik − vkUL
i

)
n̄L

k dQ

+
∑

K∈Th

(∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UL

i dK

)
. (2.24)

We will now use relations (2.12) and (2.13) to write the element boundary
integrals as face integrals:

∑

K∈Th

∫

Q

V L
i

(
HL

ik − vkUL
i

)
n̄L

k dQ

=
∑

S∈SI

∫

S

[[Vi(Hik − vkUi)]]k dS +
∑

S∈SB

∫

S

V L
i (HL

ik − vkUL
i )n̄L

k dS

=
∑

S∈SI

∫

S

(
{{Vi}}[[Hik − vkUi]]k + (V L

i − V R
i ){{Hik − vkUi}}n̄L

k

)
dS

+
∑

S∈SB

∫

S

V L
i (HL

ik − vkUL
i )n̄L

k dS.

(2.25)
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Combining (2.23), (2.24) and (2.25) we obtain:

0 = −
∑

K∈Th

∫

K

(
Vi,0Ui + Vi,kHik

)
dK

+
∑

K∈Th

(∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UL

i dK

)

+
∑

K∈Th

(∫

K(t−n+1)

V̂i(U
R
i − UL

i ) dK −
∫

K(t+n )

V̂i(U
R
i − UL

i ) dK

)

+
∑

S∈SI

∫

S

(
{{Vi}}[[Hik − vkUi]]k + (V L

i − V R
i ){{Hik − vkUi}}n̄L

k

)
dS

−
∑

S∈SI

∫

S

V̂i[[Hik − vkUi]]k dS +
∑

S∈SB

∫

S

V L
i (HL

ik − vkUL
i )n̄L

k dS.

(2.26)

The term {{Vi}}[[Hik − vkUi]]k is set to zero in the space-time DG formulation
for conservative systems by arguing that the formulation must be conserva-
tive. For a general nonconservative system we can not use this argument. In-
stead, we note that by taking V̂ = {{V }} on the faces S ∈ SI , the contribution∫
S
{{Vi}}[[Hik − vkUi]]k dS cancels with −

∫
S

V̂i[[Hik − vkUi]]k dS. Furthermore,

taking V̂ = 0 on the time faces K(tn) ⊂ Ωh(tn) ∀n, we obtain the space-time
DGFEM weak formulation for conservative systems given by (2.15). ¤

Theorem 2.2.1 allows us to finalize the derivation of the DGFEM formulation for
hyperbolic nonconservative partial differential equations. First, we start with
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the volume integral of (2.20) and integrate by parts, to obtain:

0 =
∑

K∈Th

∫

K

(
− Vi,0Ui − Vi,kFik + ViGikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UL

i dK

)

+
∑

K∈Th

(∫

K(t−n+1)

V̂i(U
R
i − UL

i ) dK −
∫

K(t+n )

V̂i(U
R
i − UL

i ) dK

)

+
∑

S∈SI

∫

S

(
{{Vi}}[[Fik − vkUi]]k + (V L

i − V R
i ){{Fik − vkUi}}n̄L

k

)
dS

+
∑

S∈SB

∫

S

V L
i (FL

ik − vkUL
i )n̄L

k dS

+
∑

S∈SI

∫

S

V̂i

(∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS

−
∑

S∈SI

∫

S

V̂i[[Fik − vkUi]]k dS,

(2.27)

where we used relation (2.11) for the time component of the space-time normal
vector and relations (2.12) and (2.13) to write the element boundary integrals
as face integrals. For the numerical flux for the test function V in (2.27) we use
(2.21), and thus obtain:

0 =
∑

K∈Th

∫

K

(
− Vi,0Ui − Vi,kFik + ViGikrUr,k

)
dK

+
∑

K∈Th

(∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UL

i dK

)

+
∑

S∈SI

∫

S

(V L
i − V R

i ){{Fik − vkUi}}n̄L
k dS

+
∑

S∈SB

∫

S

V L
i (FL

ik − vkUL
i )n̄L

k dS

+
∑

S∈SI

∫

S

{{Vi}}
( ∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS.

(2.28)

Theorem 2.2.1 states that the weak formulation given by (2.28) can be re-
duced to the space-time DGFEM formulation (2.15), when a Q exists such



22Chapter 2: DGFEM for hyperbolic nonconservative pdes: Theory

that Gikr = ∂Qik/∂Ur. However, this formulation is generally numerically un-
stable. Problematic in the conservative space-time DGFEM formulation are
the interior (V L

i −V R
i ){{Hik − vkUi}}n̄L

k and boundary V L
i

(
HL

ik − vkUL
i

)
n̄L

k flux
terms, see (2.15). Generally, a stabilizing term is added to these flux terms,
together forming an upwind numerical flux. Furthermore, the following upwind
flux is introduced in the conservative space-time DGFEM formulation at the
time faces, a formulation naturally ensuring causality in time:

Û =

{
UL at K(t−n+1)

UR at K(t+n )
. (2.29)

It replaces the traces of U taken from the interior of K ∈ T n
h . In (2.28), we

also introduce the upwind flux (2.29) at the time faces. We also need a stabi-
lizing term in (2.28). To understand how we add our stabilizing term, consider
again the conservative space-time formulation. As mentioned above, a stabiliz-
ing term is added to {{Hik − vkUi}}. Denote this stabilizing term as Hstab, then(
{{Hik − vkUi}}+Hstab

ik

)
n̄L

k = Ĥi, where Ĥi is the space-time numerical flux. In
the nonconservative space-time formulation (2.28) we add a stabilizing term to
the conservative part {{Fik − vkUi}}, but we also need to add a stabilizing part
due to the nonconservative product. For the nonconservative product there is
no counterpart for {{Fik − vkUi}}. This term is hidden in the volume integral
and in the last term of (2.28). We add the stabilizing term for the noncon-
servative product Pnc

ik to the stabilizing term for the conservative product P c
ik:(

{{Fik − vkUi}}+ P c
ik + Pnc

ik

)
n̄L

k = P̂nc
i . By introducing a ghost value UR at the

boundary, we can use the same expressions also at a boundary face. An expres-
sion for P̂nc

i (UL, UR, v, n̄L) is derived in Section 2.3, such that it reduces to the

numerical flux in the conservative case, Ĥi. Finally, the space-time DGFEM
weak formulation for partial differential equations containing nonconservative
products (2.3) is:
Find a U ∈ Vh such that for all V ∈ Vh:

0 =
∑

K∈T n
h

∫

K

(
− Vi,0Ui − Vi,kFik + ViGikrUr,k

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UR

i dK

)

+
∑

S∈Sn

∫

S

(V L
i − V R

i )P̂nc
i dS

+
∑

S∈Sn

∫

S

{{Vi}}
( ∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS,

(2.30)
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Figure 2.1: Wave pattern of the solution for the Riemann problem. Here SL and
SR are the fastest left and right moving signal velocities and v is the velocity of
the element boundary point.

Note that due to the introduction of the upwind flux at the time faces, each
space-time slab only depends on the previous space-time slab so that the sum-
mation over all space-time slabs could be dropped.

2.3 The NCP numerical flux

In Section 2.2 we derived a weak formulation for space-time DGFEM for systems
of equations containing a nonconservative product. To obtain an expression for
the flux P̂nc

i (UL, UR, v, n̄L) in (2.30), we first discuss the numerical flux Û , and
then derive the numerical flux for NonConservative Products, or NCP-flux.

Consider the following nonconservative hyperbolic system:

∂tU + ∂xF (U) + G(U)∂xU = 0, (2.31)

where U ∈ Rm, with m the number of components of U , similarly F (U) ∈ Rm,
G(U) ∈ Rm×m and x ∈ R is along the normal of the face. To approximate the
Riemann solution of (2.31) we consider only the fastest left and right moving
waves of the system with velocities SL and SR and the grid velocity. In the star
region (see Figure 2.1), which is the domain enclosed by the waves SL and SR,
the averaged exact solution Ū∗ is defined as:

Ū∗ =
1

T (SR − SL)

∫ TSR

TSL

U(x, T ) dx. (2.32)

In what follows we obtain a relation for Ū∗ from the weak formulation of (2.31).
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Using Gauss’ theorem we obtain over the control volume Ω1 ∪ Ω2 the relation:

∫ SLT

xL

UL dx +

∫ vT

SLT

U(x, T ) dx =

∫ 0

xL

UL dx+

∫ T

0

FL dt −
∫ T

0

(
F (U(vt, t)) − vU(vt, t)

)
dt −

∫

Ω2

G(U)∂xU dx dt

−
∫ T

0

∫ 1

0

G(φLL∗(τ ;UL, U∗
L))

∂φLL∗

∂τ
(τ ;UL, U∗

L) dτ dt, (2.33)

where FL = F (UL) and U∗
L = lims↓SL

U∗(st, t) is the trace of U∗ taken from the
interior of Ω2, which is constant along the wave SL due to the self similarity of
the solution in the star region. Replace the exact integrand in the second integral
on the left hand side of (2.33) with the approximate solution Ū∗. Furthermore,
using the self similarity of the solution in the star region [54], we obtain:

∫

Ω2

G(U)∂xU dxdt =

∫ T

t=0

∫ vt

x=SLt

G(U)∂xU dxdt

=

∫ T

t=0

∫ v

SL

G(U∗)∂sU
∗∂xs |J | dsdt

= T

∫ v

SL

G(U∗)∂sU
∗ ds,

(2.34)

where we used the coordinate transformation x = st, t = t, which has a Jacobian
|J | = t. Introduce the trace of U∗ taken from the interior of Ω2 along the line
x = vt as: U∗

Lv = lims↑v U∗(st, t) and the path φL∗v : [0, 1] × Rm × Rm → Rm

with:

φL∗v(τ ;U∗
L, U∗

Lv) = U∗(s), if SL < s < v.

By connecting these two paths into the path φLv : [0, 1] × Rm × Rm → Rm,
such that φLv(τ ;UL, U∗

Lv) = φLL∗ ∪ φL∗v, redefining τ and using (2.34), the
integral contributions due to the nonconservative product on the righthand side
of (2.33) can be combined, resulting in:

SLUL + (v − SL)Ū∗ = FL − F v −
∫ 1

0

G(φLv(τ ;UL, U∗
Lv))

∂φLv

∂τ
(τ ;UL, U∗

Lv) dτ,

(2.35)
where F v = F (U(vt, t)) − vU(vt, t) which is constant along x = vt. Similarly,
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using Gauss’ theorem for the control volume Ω3 ∪ Ω4 yields:

∫ SRT

vT

U(x, T ) dx +

∫ xR

SRT

UR dx =

∫ xR

0

UR dx−
∫ T

0

FR dt +

∫ T

0

(
F (U(vt, t)) − vU(vt, t)

)
dt −

∫

Ω3

G(U)∂xU dx dt−
∫ T

0

∫ 1

0

G(φR∗R(τ ;U∗
R, UR))

∂φR∗R

∂τ
(τ ;U∗

R, UR) dτ dt, (2.36)

where FR = F (UR) and U∗
R = lims↑SR

U∗(st, t) is the trace of U∗ taken from
the interior of Ω3, which is constant along the wave SR. Furthermore, denote
the trace of U∗ taken from the interior of Ω3 along the line x = vt as: U∗

Rv =
lims↓v U∗(st, t). Replace the exact integrand in the first integral on the left
hand side of (2.36) with the average of the exact solution Ū∗. Introduce the
path φvR∗ : [0, 1] × Rm × Rm → Rm with:

φvR∗(τ ;U∗
Rv, U∗

R) = U∗(s), if v < s < SR,

and the path φvR : [0, 1] × Rm × Rm → Rm such that φvR(τ ;U∗
Rv, UR) =

φR∗R ∪ φvR∗ after redefining τ . Using the self similarity of the solution in the
star region Ω3, similar to (2.34), the integral contributions on the righthand side
of (2.36) can be combined, resulting in:

(SR − v)Ū∗ − SRUR = F v − FR −
∫ 1

0

G(φvR(τ ;U∗
Rv, UR))

∂φvR

∂τ
(τ ;U∗

Rv, UR) dτ.

(2.37)
Note that U∗

Lv = U∗
Rv since the solution U is smooth across ∂Ω2∩∂Ω3, where Ω2

and Ω3 are the closures of Ω2 and Ω3. Now, introduce the path φ̄ : [0, 1]×Rm ×
Rm → Rm (see Figure 2.2) and redefine τ such that φ̄(τ ;UL, UR) = φLv ∪ φvR

then, by adding (2.35) and (2.37) and rearranging terms, we obtain:

Ū∗ =
SRUR − SLUL + FL − FR

SR − SL
−

1

SR − SL

∫ 1

0

G(φ̄(τ ;UL, UR))
∂φ̄

∂τ
(τ ;UL, UR) dτ. (2.38)

This equation is still exact if we would know the path φ̄. Note from Figure 2.1
that outside the star region the solution is still at its initial values at t = 0,
denoted by UL and UR. Within the star region bounded by the slowest and
fastest signal speed SL and SR, respectively, an averaged star state solution Ū∗
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τ

φ̄(τ )

UL

UR

U ∗
R

U ∗
L

1
3

2
3

10

Figure 2.2: Combining the paths to form φ̄LR(τ ;UL, UR) = φLL∗ ∪φL∗v∪φvR∗ ∪
φR∗R.

is assumed. We define the numerical flux for U as:

Û =





UL, if v ≤ SL,

Ū∗, if SL < v < SR,

UR, if v ≥ SR,

where the averaged star state solution Ū∗ is given by (2.38) and v is the velocity
of the element boundary point.

We now continue to derive an expression for P̂nc(UL, UR, v, n̄L). Define

∫ τ

0

G(φ̄(τ̃ ;U1, U2))
∂φ̄

∂τ̃
(τ̃ ;U1, U2) dτ̃ ≡

∫ τ

0

dG(φ̄(τ ;U1, U2)),

so that: ∫ 1

0

G(φ̄(τ̃ ;U1, U2))
∂φ̄

∂τ̃
(τ̃ ;U1, U2) dτ̃ = G(U2) − G(U1),

using conditions H1-H4. Denote G(Uk) = Gk and introduce G̃k = Gk − {{G}},
for k = 1, 2 with {{G}} = (G1 + G2)/2. Note that G2 − G1 = G̃2 − G̃1. From
(2.35) and (2.37), the definition of the paths, conditions H1-H4 and assuming
U∗

Lv = U∗
Rv = Ū∗, we then obtain:

SLUL + (v − SL)Ū∗ = FL − F v − G̃∗ + G̃L, (2.39)

and:
(SR − v)Ū∗ − SRUR = F v − FR − G̃R + G̃∗, (2.40)
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where GL = G(UL), GR = G(UR) and G∗ = G(Ū∗). Subtracting (2.40) from
(2.39) and rearranging the terms, we obtain:

F v + G̃∗ = {{G̃}} + {{F}} + 1
2

(
(SR − v)Ū∗ + (SL − v)Ū∗ − SLUL − SRUR

)
,

with {{G̃}} ≡ (G̃L + G̃R)/2 = 0. Similarly, by adding (2.39) and (2.40) together
and rearranging terms, we obtain:

FL + G̃L = FL − 1
2

∫ 1

0

G(φ̄(τ ;UL, UR))
∂φ

∂τ
(τ ;UL, UR) dτ,

and:

FR + G̃R = FR + 1
2

∫ 1

0

G(φ̄(τ ;UL, UR))
∂φ

∂τ
(τ ;UL, UR) dτ.

The NCP numerical flux P̂nc(UL, UR, v, n̄L) is defined in Ω1 as FL + G̃L, in

Ω2 ∪ Ω3 as F v + G̃∗ and in Ω4 as FR + G̃R (see also (2.30)). The NCP-flux is
thus given by:

bP
nc
i (UL, UR, v, n̄

L) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

F L
ikn̄L

k − 1

2

R

1

0
Gikr(φ̄(τ ; UL, UR)) ∂φ̄r

∂τ
(τ ; UL, UR) dτn̄L

k

if SL > v,

{{Fik}}n̄
L
k + 1

2

`

(SR − v)Ū∗
i + (SL − v)Ū∗

i − SLUL
i − SRUR

i )

if SL < v < SR,

F R
ikn̄L

k + 1

2

R

1

0
Gikr(φ̄(τ ; UL, UR)) ∂φ̄r

∂τ
(τ ; UL, UR) dτn̄L

k

if SR < v,

(2.41)

with Ū∗ given by (2.38). Note that if G is the Jacobian of some flux function

Q, then P̂nc(UL, UR, v, n̄L) is exactly the HLL flux derived for moving grids in
van der Vegt and van der Ven [79].





CHAPTER 3

Discontinuous Galerkin finite element methods
for hyperbolic nonconservative partial

differential equations: Applications

In the previous chapter and in Appendix A we presented space- and space-time discon-

tinuous Galerkin finite element (DGFEM) formulations for systems containing non-

conservative products, in which we introduced the theory of weak solutions for noncon-

servative products into the DGFEM formulation. This leads to the new question how

to define the path connecting left and right states across a discontinuity. The effect

of different paths on the numerical solution is investigated in this chapter and found

to be small. We furthermore apply our scheme to two different systems of partial dif-

ferential equations. We consider the shallow water equations, where topography leads

to nonconservative products, in which the known, possibly discontinuous, topography

is formally taken as an unknown in the system. We also consider a simplification of

a depth-averaged two-phase flow model which contains more intrinsic nonconservative

products.

3.1 Obtaining and solving the discrete system

By replacing the trial function U and the test function V in the DGFEM weak
formulation by their polynomial approximations, a system of algebraic equations
is obtained. Solving this system for the expansion coefficients of the trial func-
tion U results in the DGFEM solution of our problem. Depending on whether
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we are solving the DGFEM weak formulation in space-time or in space, different
basis functions and solving algorithms are used, which we discuss next.

3.1.1 Space-time DGFEM basis functions and solving
method

Polynomial approximations for the trial function U and the test functions V in
each element K ∈ T n

h are introduced as:

U(t, x̄)|K = Ûmψm(t, x̄) and V (t, x̄)|K = V̂lψl(t, x̄), (3.1)

with ψm the basis functions, x̄ ∈ Rq, and expansion coefficients Ûm and V̂l,
respectively, for m, l = 0, 1, 2, ..., N , where N depends on the order of accuracy
and the space dimension q. In this chapter the basis functions are defined such
that the test and trial functions can be split into an element mean at time tn+1

and a fluctuating part. The basis functions ψm are given by:

ψm =

{
1, for m = 0

ϕm(t, x̄) − 1
|Kj(t

−

n+1)|

∫
Kj(t

−

n+1)
ϕm(t, x̄) dK for m = 1, 2, ..., N,

where the functions ϕm(x) in element K are related to the basis functions ϕ̂m(ξ),
with ϕ̂m(ξ) ∈ P p(K̂) and ξ the local coordinates in the master element K̂,
through the mapping GK:

ϕm = ϕ̂m ◦ G−1
K .

By replacing U and V in the weak formulation (2.30) by their polynomial ex-
pansions (3.1), a system of algebraic equations for the expansion coefficients of
U is obtained. For each physical time step, the system can be written as:

L(Ûn; Ûn−1) = 0. (3.2)

This system of coupled non-linear equations is solved in this chapter by adding
a pseudo-time derivative:

|Kn|∂Ûn

∂τ
= − 1

∆t
L(Ûn; Ûn−1), (3.3)

which is integrated to steady-state in pseudo-time. Following van der Vegt and
van der Ven [79] and Klaij et al. [40], we use the explicit Runge-Kutta method
for inviscid flow with Melson correction which is given by:

Algorithm 1 Five-stage explicit Runge-Kutta scheme:

1. Initialize V̂ 0 = Û .
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2. For all stages s = 1 to 5:

(I + αsλI)V̂ s = V̂ 0 + αsλ
(
V̂ s−1 − L(V̂ s−1, Ûn−1)/|Kn|

)
.

3. Update V̂ = V̂ 5.

The coefficient λ is defined as λ = ∆τ/∆t, with ∆τ the pseudo-time step and
∆t the physical time step. The Runge-Kutta coefficients αs are defined as:
α1 = 0.0797151, α2 = 0.163551, α3 = 0.283663, α4 = 0.5 and α5 = 1.0.

3.1.2 Space DGFEM basis functions and solving method

Polynomial approximations for the trial function U and the test function V in
each element Kj are introduced:

U(t, x̄)|Kj
= Ûmψm(x̄), and V (t, x̄)|Kj

= V̂lψl(x̄) (3.4)

for m, l = 0, 1, 2, ...,M , where M depends on the order of accuracy and the
space dimension, and where the basis functions ψ, in this chapter, are given by:

ψm =

{
1 for m = 0

ϕm(x̄) − 1
|Kj |

∫
Kj

ϕm(x̄) dK for m = 1, 2, ...,M.

The functions ϕm(x̄) in element Kj are related to the basis functions ϕ̂m(ξ) on

the master element K̂ through the mapping F :

ϕm = ϕ̂m ◦ F−1
K

with ϕ̂m(ξ) ∈ P p(K̂) and ξ the local coordinates in the master element K̂. By
replacing U and V in the weak formulation (A.11) by their polynomial expan-
sions (3.4), we arrive at the following system of ordinary differential equations
for the expansion coefficients Û of the variables U :

M
dÛ

dt
= LDG(Û), (3.5)

with M the element mass matrices defined as Mij =
∫

Kj
ψiψj dK and LDG(Û)

the space part of the weak formulation with U and V replaced by their poly-
nomial expansions. In this chapter, to solve this system of ordinary differential
equations, we use an explicit TVD third order Runge-Kutta method (see e.g.
Gottlieb and Shu [25]).
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3.1.3 Slope limiters

In our space- and space-time DGFEM computations, when the solution may
admit discontinuities, we use a slope limiter to deal with overshoots and under-
shoots. In this chapter we use a simple minmod function (see e.g. Cockburn and
Shu [19]). Let Ūk represent the mean of U on element Kk and let Ûk represent
the slope, then the solution in an element is given by:

Uk = Ūk + ψ(x)m(Ûk, Ūk+1 − Ūk, Ūk − Ūk−1),

where the minmod function m is defined as:

m(a1, a2, a3) =

{
s min1≤n≤3 |an| if s = sign(a1) = sign(a2) = sign(a3)

0 otherwise.

3.2 One dimensional test cases

3.2.1 The one dimensional shallow water equations with
topography

We consider a non-dimensional form of the shallow water system with topogra-
phy. The system reads:

Ui,0 + Fi,1 + GijUj,1 = 0, for i, j = 1, 2, 3 (3.6)

with:

U =




b
h
hu


 , F =




0
hu

hu2 + 1
2F

−2h2


 , G(U) =




0 0 0
0 0 0

F
−2h 0 0


 .

(3.7)
Here b is the topography, h the water depth, u the flow velocity and F the Froude
number defined as F = u∗

0/
√

g∗h∗
0, where the starred values denote reference

values. The eigenvalues of ∂F/∂U + G(U) are given by:

λ1 = u −
√

F−2h, λ2 = 0, λ3 = u +
√

F−2h. (3.8)

When taking φ = UL + τ(UR − UL), the NCP-flux for (3.6) on a fixed grid
becomes:

P̂nc =





FL − 1
2V nc, if SL > 0,

Fhll − (SR + SL)V nc/(2(SR − SL)), if SL < 0 < SR,

FR + 1
2V nc, if SR < 0,
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in which Fhll is the HLL-flux [74]:

Fhll =
SRFL − SLFR + SLSR(UR − UL)

SR − SL

and V nc appears in the extra term due to the nonconservative product:

V nc =
[
0, 0, −F

−2{{h}}[[b]]
]T

.

In the numerical flux, as derived in Section 2.3, we take:

SL = min(uL −
√

F−2hL, uR −
√

F−2hR) and

SR = max(uL +
√

F−2hL, uR +
√

F−2hR).

Test cases 1 and 2: rest flow

For test cases 1 and 2 we only consider the solution determined with space-
time DGFEM calculations using linear basis functions and the linear path φ =
UL + τ(UR − UL). Consider flow at rest over a discontinuous topography with
initial and boundary conditions:

• Test case 1. Initial conditions: b(x, 0) = 1 if x < 0 and b(x, 0) = 0 if x > 0,
h(x, 0) + b(x, 0) = 2, hu(x, 0) = 0. Boundary conditions: b(−5, t) = 1,
h(−5, t) = 1, u(−5, t) = 0, b(5, t) = 0, h(5, t) = 2, u(5, t) = 0.

• Test case 2. Initial condition: b(x, 0) = 0 if x < 0 and b(x, 0) = 1 if x > 0,
h(x, 0) + b(x, 0) = 2, hu(x, 0) = 0. Boundary conditions: b(−5, t) = 0,
h(−5, t) = 2, u(−5, t) = 0, b(5, t) = 1, h(5, t) = 1, u(5, t) = 0.

In Figure 3.1 we show the steady state solution, calculated using a time step of
∆t = 1021 on a grid with 100 cells and a Froude number of F = 0.2. We solve the
system of non-linear equations using a pseudo time stepping integration method
(see van der Vegt and van der Ven [79]). As stopping criterium in the pseudo
time-stepping calculation we take that the maximum residual must be smaller
than 10−13. A pseudo time stepping CFL number of CFLpseudo = 0.8 is used.

For the space DGFEM weak formulation we prove theoretically, that when
using linear basis functions and taking the path φ = UL + τ(UR −UL), rest flow
remains at rest. Consider the one dimensional version of the space DGFEM
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Figure 3.1: Flow at rest over a discontinuous topography. F = 0.2, 100 cells,
∆t = 1021.

weak formulation (A.11) for the shallow water equations:

0 =
∑

k

∫

Kk

(
ViUi,0 − Vi,1Fi + ViGijUj,1

)
dK

+
∑

S∈SI

∫

S

{{Vi}}
( ∫ 1

0

Gij(φ(τ ;UL, UR))
∂φj

∂τ
(τ ;UL, UR) dτ

)
n̄L dS

+
∑

S∈SI

∫

S

(V L
i − V R

i )P̂nc
i dS.

We only consider cell Kk where the contributions satisfy:

0 =

∫

Kk

(
ViUi,0 − Vi,1Fi + ViGijUj,1

)
dK

+

∫

Sk+1

1
2V L

i

(∫ 1

0

Gij(φ(τ ;UL, UR))
∂φj

∂τ
(τ ;UL, UR) dτ

)
n̄L + V L

i P̂nc
i dS

+

∫

Sk

1
2V R

i

(∫ 1

0

Gij(φ(τ ;UL, UR))
∂φj

∂τ
(τ ;UL, UR) dτ

)
n̄L − V R

i P̂nc
i dS.

(3.9)

For the numerical flux we take the star-state solution given by (2.38). For rest
flow, using φ = UL + τ(UR −UL) and hL + bL = hR + bR the star-state solution
is given by:

Ū∗ =
1

SR − SL

[
SRbR − SLbL, SRhR − SLhL, 0

]T
, (3.10)
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so that the numerical flux P̂nc = {{F}} + 1
2 (SL(Ū∗ − UL) + SR(Ū∗ − UR)) is

given by:

P̂nc =
[SLSR(bR − bL)

SR − SL
,

SLSR(hR − hL)

SR − SL
, 1

4F
−2(h2

L + h2
R)

]T
. (3.11)

Also, using φ = UL + τ(UR − UL) and hL + bL = hR + bR we can show that:

∫ 1

0

Gij(φ(τ ;UL, UR))
∂φj

∂τ
(τ ;UL, UR) dτ =

[
0, 0, −F

−2[[b]]{{h}}
]T

.

We can write (3.9) now as:

0 =

∫

Kk

(
ViUi,0 − Vi,1Fi + GijUj,1

)
dK +

∫

Sk+1

V L
i Pp

i dS −
∫

Sk

V R
i Pm

i dS,

(3.12)

where Pp and Pm are given by:

Pp = 1
2

∫ 1

0

Gij(φ(τ ;UL, UR))
∂φj

∂τ
(τ ;UL, UR) dτ + P̂nc

=

[
SLSR(bR − bL)

SR − SL
,

SLSR(hR − hL)

SR − SL
, 1

2F
−2h2

L

]T

Pm = 1
2

∫ 1

0

Gij(φ(τ ;UL, UR))
∂φj

∂τ
(τ ;UL, UR) dτ − P̂nc

=

[
− SLSR(bR − bL)

SR − SL
, −SLSR(hR − hL)

SR − SL
, 1

2F
−2h2

R

]T

.

Using linear basis functions we can evaluate the integrals as follows:

∫

Kk

ViUi,0 dK = ∆xV i|Kk
∂tU i|Kk

+
∆x

3
V̂i|Kk

∂tÛi|Kk
, (3.13a)

−
∫

Kk

Vi,1Fi dK = −
∫ 1

−1

V̂i|Kk
F (U i|Kk

+ Ûi|Kk
ξ) dξ

= −V̂i|Kk

[
0, 0, 1

3F
−2ĥ2

k + F
−2h̄2

k

]T

(3.13b)

∫

Kk

ViGijUj,1 dK =

∫ 1

−1

(V i|Kk
+ V̂i|Kk

ξ)G(U i|Kk
+ Ûi|Kk

ξ)Ûi|Kk
dξ

= V i|Kk

[
0 0, 2F

−2hk b̂k

]T
+ V̂i|Kk

[
0, 0, 2

3F
−2ĥk b̂k

]T

(3.13c)
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∫

Sk+1

V L
i Pp

i dS = (V |Kk
+ V̂ |Kk

)




SL
k+1SR

k+1(b
R
k+1−bL

k+1)

SR
k+1−SL

k+1

SL
k+1SR

k+1(h
R
k+1−hL

k+1)

SR
k+1−SL

k+1

1
2F

−2(h̄k + ĥk)2


 , (3.13d)

−
∫

Sk

V R
i Pm

i dS = −(V |Kk
− V̂ |Kk

)




SL
k SR

k (bR
k −bL

k )

SR
k
−SL

k

SL
k SR

k (hR
k −hL

k )

SR
k
−SL

k
1
2F

−2(h̄k − ĥk)2


 , (3.13e)

where (·) and (̂·) are the means and slopes, respectively, of the approximation for
U and V . Adding the vectors (3.13b)-(3.13e), we note that the third element
of this sum is zero using hL + bL = hR + bR and the fact that the slope of
h + b = 0 (so Û |Kk

= (−ĥk, ĥk, 0)). Note that in (3.13d) and (3.13e) we have
bR
k+1 − bL

k+1 + hR
k+1 −hL

k+1 = 0 and bR
k − bL

k + hR
k −hL

k = 0, respectively so that:

∂t(h̄k + b̄k) = 0, ∂t(ĥk + b̂k) = 0, ∂thuk = 0, ∂tĥuk = 0,

meaning that for rest flow h + b remains constant.

Test case 3: Subcritical flow over a bump

We now consider subcritical flow with a Froude number of F = 0.2 over a bump.
The topography reads:

b(x) =

{
a
(
b − (x − xp)

)(
b + (x − xp)

)
b−2 for |x − xp| ≤ b,

0 otherwise.
(3.14)

We use xp = 10, a = 0.5 and b = 2 as in [71]. The exact steady state solution for
this test case is found by solving the following third order equation in u [31, 71]:

F
2u3/2 + (b − F

2/2 − 1)u + 1 = 0 with hu = 1. (3.15)

The domain x ∈ [0, 20] is divided into 40, 80, 160 and 320 cells. We consider
DGFEM and STDGFEM calculations using the linear path φ = UL+τ(UR−UL).
For space DGFEM calculations, a CFL number of CFL = 0.8 is taken and when
the residuals are smaller than 10−11 the calculation is stopped. For STDGFEM
calculations we consider the solution after one physical time step of ∆t = 1021.
We can do this because we want to consider the steady state solution. As
stopping criterium in the pseudo time-stepping calculation we take that the
maximum residual must be smaller than 10−11. A pseudo time stepping CFL
number of CFLpseudo = 0.8 is used.
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Figure 3.2: Test case 3: steady-state solution calculated using space DGFEM,
F = 0.2, 320 cells.

The initial condition is h + b = 1 and hu = 1 and the boundary conditions
are: b(0, t) = 0, h(0, t) = 1, u(0, t) = 1, b(1, t) = 0, h(1, t) = 1 and u(1, t) = 1.
The steady state solution is given in Figure 3.2. The order of convergence is
determined by looking at the L2 and the Lmax norm of the numerical error in
z = h + b and hu with respect to the exact solution:

||znum − zexact||2 =

( Ncells∑

k=1

∫

Kk

(
znum
Kk

− zexact
Kk

)2
)1/2

, (3.16)

and:

||znum − zexact||max = max{|zi
num − zi

exact| : 1 ≤ i ≤ Ncells}. (3.17)

The order of convergence using DGFEM and STDGFEM is given in Table 3.1 us-
ing linear basis functions and in Table 3.2 using quadratic basis functions. Using
linear basis functions we obtain second order convergence and using quadratic
basis functions we obtain third order convergence for both space-DGFEM and
space-time DGFEM calculations.

Test case 4: Supercritical flow over a bump

Next, we consider supercritical flow with a Froude number of F = 1.9 over a
bump. We use the same topography (3.14) and the exact solution can be found
by solving (3.15). The domain x ∈ [0, 20] is again divided into 40, 80, 160 and
320 cells and we consider DGFEM and STDGFEM calculations using the linear
path φ = UL + τ(UR − UL). For space DGFEM calculations, time steps of
∆t = 0.01 are made. Using linear basis functions, a CFL number of CFL = 0.3
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DGFEM

h + b hu

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.1133 · 10−2 - 0.6513 · 10−2 - 0.1265 · 10−2 - 0.3302 · 10−2 -

80 0.3193 · 10−3 1.8 0.2387 · 10−2 1.4 0.1944 · 10−3 2.7 0.8030 · 10−3 2.0

160 0.8364 · 10−4 1.9 0.6989 · 10−3 1.8 0.2764 · 10−4 2.8 0.1369 · 10−3 2.6

320 0.2119 · 10−4 2.0 0.1847 · 10−3 1.9 0.3798 · 10−5 2.9 0.2931 · 10−4 2.2

STDGFEM

h + b hu

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.1141 · 10−2 - 0.6559 · 10−2 - 0.1262 · 10−2 - 0.3285 · 10−2 -

80 0.3194 · 10−3 1.8 0.2387 · 10−2 1.5 0.1943 · 10−3 2.7 0.8029 · 10−3 2.0

160 0.8365 · 10−4 1.9 0.6989 · 10−3 1.8 0.2763 · 10−4 2.8 0.1369 · 10−3 2.6
320 0.2119 · 10−4 2.0 0.1847 · 10−3 1.9 0.3797 · 10−5 2.9 0.2929 · 10−4 2.2

Table 3.1: L2 and Lmax error for h + b and hu using DGFEM and STDGFEM
for test case 3. Second order convergence rates are shown for F = 0.2.

is taken and when the residuals are smaller than 10−11 the calculation is stopped.
For the STDGFEM calculation we consider again the solution after one physical
time step of ∆t = 1021. The same stopping criteria as in the subcritical flow
case are used. Using linear basis functions, we use a pseudo time stepping CFL
number of CFLpseudo = 0.8. For quadratic basis functions, on the grids with
40 and 160 cells, a pseudo time stepping CFL number of CFLpseudo = 0.4 is
employed and on the grids with 80 and 320 cells a pseudo time stepping CFL
number of CFLpseudo = 0.8.

The initial condition is h + b = 1 and hu = 1 and transmissive boundary
conditions are given at x = 0 and at x = 20, i.e., U b = UL, where U b is the
vector of the boundary data and UL is the vector with the data calculated at
the boundary from inside the domain. The steady-state solution is shown in
Figure 3.3. The order of convergence is again determined by computing the L2

and the Lmax norm of the numerical error in h + b and hu with respect to the
exact solution as defined in (3.16) and (3.17). The order of convergence using
DGFEM and STDGFEM is given in Table 3.3 using linear basis functions and
in Table 3.4 using quadratic basis functions.

We see that the space- and space-time DGFEM calculations results in sec-
ond order convergence for h + b using linear basis functions and in third order
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DGFEM

h + b hu

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.3210 · 10−3 - 0.1466 · 10−2 - 0.8352 · 10−3 - 0.3124 · 10−2 -

80 0.4622 · 10−4 2.8 0.2670 · 10−3 2.5 0.1269 · 10−3 2.7 0.5562 · 10−3 2.5

160 0.6303 · 10−5 2.9 0.3567 · 10−4 2.9 0.1689 · 10−4 2.9 0.7186 · 10−4 3.0

320 0.7931 · 10−6 3.0 0.4459 · 10−5 3.0 0.2144 · 10−5 3.0 0.8860 · 10−5 3.0

STDGFEM

h + b hu

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.3278 · 10−3 - 0.1836 · 10−2 - 0.2339 · 10−3 - 0.1170 · 10−2 -

80 0.4433 · 10−4 2.9 0.3195 · 10−3 2.5 0.3721 · 10−4 2.7 0.2401 · 10−3 2.3

160 0.4556 · 10−5 3.3 0.3142 · 10−4 3.3 0.5513 · 10−5 2.8 0.3596 · 10−4 2.7
320 0.5522 · 10−6 3.0 0.4407 · 10−5 2.8 0.7489 · 10−6 2.9 0.5218 · 10−5 2.8

Table 3.2: L2 and Lmax error for h + b and hu using DGFEM and STDGFEM
for test case 3. Third order convergence rates are shown for F = 0.2.

convergence for h+b using quadratic basis functions. We do not show the order
of convergence for hu because the error for hu is of the order of machine pre-
cision on all meshes for the space DGFEM calculations and stabilizes around
10−8 for the space-time DGFEM calculations.

Test case 5: Transcritical flow over a bump

For this test case we consider the steady state solution of transcritical flow with
a shock over a bump. The topography is given by:

b(x) =

{
0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise,

which is the same as that used by Xing and Shu [87]. The initial condition
is h + b = 0.5 and hu = 0 and the boundary conditions are: b(0, t) = 0,
hu(0, t) = 0.18, b(25, t) = 0, h(25, t) = 0.33, hu(25, t) = 0.18. The remaining
boundary data are set equal to the data calculated at the boundary from inside
the domain. In our computations, we take F

−2 = 9.812. Simulations concern
space-time DGFEM. We consider the solution after one physical time step of
∆t = 1021 on a grid with 200 cells using a pseudo time stepping CFL number
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Figure 3.3: Test case 4: steady-state solution calculated using space DGFEM,
F = 1.9, 320 cells.

DGFEM h + b STDGFEM h + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.7543 · 10−2 - 0.4619 · 10−1 - 0.7543 · 10−2 - 0.4619 · 10−1 -
80 0.1281 · 10−2 2.6 0.9406 · 10−2 2.3 0.1281 · 10−2 2.6 0.9406 · 10−2 2.3

160 0.3188 · 10−3 2.0 0.2615 · 10−2 1.8 0.3188 · 10−3 2.0 0.2615 · 10−2 1.8

320 0.7914 · 10−4 2.0 0.6883 · 10−3 1.9 0.7914 · 10−4 2.0 0.6883 · 10−3 1.9

Table 3.3: L2 and Lmax error for h + b using DGFEM and STDGFEM for test
case 4. Second order convergence rates are shown for F = 1.9.

of CFLpseudo = 0.8. To deal with the shock, we used the slope limiter as
discussed in Section 3.1.3. The solution is given in Figure 3.4 and compares
well with results in [31].

Test case 6: Perturbation of a steady state solution

We repeat a test case as was formulated in Xing and Shu [87] which was origi-
nally proposed by LeVeque [47]. Consider a topography given by:

b(x) =

{
0.25

(
cos(10π(x − 1.5)) + 1) if 1.4 ≤ x ≤ 1.6,

0 otherwise.
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DGFEM h + b STDGFEM h + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.1293 · 10−2 - 0.5034 · 10−2 - 0.9181 · 10−3 - 0.4946 · 10−2 -

80 0.1944 · 10−3 2.7 0.9383 · 10−3 2.4 0.1624 · 10−3 2.5 0.1127 · 10−2 2.1
160 0.2892 · 10−4 2.7 0.1545 · 10−3 2.6 0.1830 · 10−4 3.1 0.1382 · 10−3 3.0

320 0.3724 · 10−5 3.0 0.2111 · 10−4 2.9 0.2253 · 10−5 3.0 0.2002 · 10−4 2.8

Table 3.4: L2 and Lmax error for h + b using DGFEM and STDGFEM for test
case 4. Third order convergence rates are shown for F = 1.9.
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Figure 3.4: Test case 5: steady-state transcritical flow with a shock, ∆t = 1021,
Ncells = 200, CFLτ = 0.8, F

−2 = 9.812.

The initial conditions are given by:

hu(x, 0) = 0, h(x, 0) =

{
1 − b(x) + ǫ if 1.1 ≤ x ≤ 1.2,

1 − b(x) otherwise.

At the boundaries, we use transmissive boundary conditions. We take F
−2 =

9.812. The same two cases as in Xing and Shu [87] were run: ǫ = 0.2 (big
pulse) and ǫ = 0.001 (small pulse). We used space-time DGFEM to compute
the solution on a uniform grid with 200 cells and 3000 cells. On the grid with
200 cells, a physical time step of ∆t = 0.0002 was used. On the grid with 3000
cells, we used a physical time step of ∆t = 0.00002. A pseudo time stepping
CFL number of CFLpseudo = 0.4 was used. In Figures 3.5 and 3.6 we show
the fine and coarse mesh solution, as in [87], for the water level h(x) + b(x) and
mass flow hu(x) at time t = 0.2 for the big pulse test case and the small pulse
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test case, respectively.
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Figure 3.5: Test case 6: perturbation of a steady state solution with a big pulse
at time t = 0.2, ǫ = 0.2. Line: Ncells = 3000. Dots: Ncells = 200.
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Figure 3.6: Test case 6: perturbation of a steady state solution with a small
pulse at time t = 0.2, ǫ = 0.001. Line: Ncells = 3000. Dots: Ncells = 200.

Test case 7: Dam break problem over a rectangular bump

A dam break problem is simulated over a rectangular hump, as in [87]. The
topography is given by:

b(x) =

{
8 if |x − 750| ≤ 1500/8,

0 otherwise,
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for x ∈ [0, 1500]. The initial conditions are given by:

hu(x, 0) = 0, h(x, 0) =

{
20 − b(x) if x ≤ 750,

15 − b(x) otherwise,

and as boundary conditions we take: b(0, t) = 0, h(0, t) = 20, hu(0, t) = 0,
b(1500, t) = 0, h(1500, t) = 15 and hu(1500, t) = 0. We take F

−2 = 9.812. With
space-time DGFEM the solution was computed on a uniform grid with 400 cells
and 4000 cells. On the grid with 400 cells, a physical time step of ∆t = 0.02 was
used and on the grid with 4000 cells, the physical time step was ∆t = 0.002.
The pseudo time stepping CFL number was CFLpseudo = 0.8. In Figures 3.7
and 3.8 we show the solution for the water level h(x) + b(x) at time t = 15 and
at time t = 60, respectively.
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Figure 3.7: Test case 7: the dam breaking problem at time t = 15. Line: 4000
cells. Dots: 400 cells.

Conclusions

For the shallow water equations with topography we showed numerical re-
sults of seven test cases calculated using the space- and/or space-time DGFEM
discretizations we developed for nonconservative hyperbolic partial differential
equations. For all test cases we obtained good results. For test cases 1 and 2 we
showed that rest flow remained unchanged despite having discontinuities in the
topography. In test cases 3 and 4 we solved subcritical and supercritical flow
over a bump demonstrating that the scheme is second order accurate for linear
basis functions and third order accurate for quadratic basis functions. In test
cases 5, 6 and 7 we showed that we resolved also more complex test cases with
discontinuous solutions.
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Figure 3.8: Test case 7: the dam breaking problem at time t = 60. Line: 4000
cells. Dots: 400 cells.

3.2.2 The depth averaged two-fluid model

In this section we consider two fluid models (also known as Eulerian models) in
which the particle phase is treated as a continuum by averaging over individual
particles. Two frequently used models for two-fluid equations, are those derived
by Anderson and Jackson [5], and Drew and Lahey [22] and Enwald et al. [23].
Apart from their derivation, the difference between these systems of equations
is how the fluid-phase shear stress (if included) is multiplied by the solid volume
fraction in the momentum equations (see also van Wachem et al. [81]). In the
limiting case that pressure is the only fluid stress, both formulations are equal.

We will consider a simplification of these equations, namely the depth-
averaged two fluid model derived by Pitman and Le [62]. They start with
the system of Anderson and Jackson [5] and use the shallow flow assumption,
H/L ≪ 1, where H is the characteristic length of the flow in the z-direction and
L the characteristic length of the flow in the y-direction. The derivation is sim-
ilar to the way the shallow water equations are derived from the Navier-Stokes
equations. Since the pressure is the only fluid stress, the same depth-averaged
two fluid model also follows from the system derived by Drew and Lahey [22]
and Enwald et al. [23].

The dimensionless depth-averaged two fluid model of Pitman and Le [62],
ignoring source terms for simplicity, can be written as:

Ui,0 + Fi,1 + GijUj,1 = 0, for i, j = 1, 2, 3, 4, (3.18)
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where:
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2
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2

6

6

6

4

h(1 − α)u
hαv

hαv2 + 1
2 ε(1 − ρ)αxxgh2α

hu2 + 1
2 εgh2

0

3

7

7

7

5

G(U) =

2

6

6

6

6

4

0 0 0 0 0
0 0 0 0 0

εραgh εραgh 0 0 ε(1 − ρ)αxxghα + εραgh
2u2α
1−α

− αu2 − εghα −εghα − αu2 u(α − 1) uα − 2uα
1−α

(1 − α)εgh

0 0 0 0 0

3

7

7

7

7

5

.

(3.19)

Again we have taken the topography b as unknown. The meaning of the
different symbols are: h(x, t) is the depth of the flow, v(x, t) the velocity of the
solid phase, u(x, t) the velocity of the fluid phase, α(x, t) the volume fraction of
the solid phase, b(x) the topography term, ε = H/L, ρ is the ratio between the
fluid density and the solid density, αxx = kap, where kap is the Earth pressure
coefficient and g is the z-component of the scaled gravity. Note that in the limit
α → 0, this model reduces to the shallow water equations with εg akin to F

−2:

∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + 1
2εgh2) = −εgh∂xb.

(3.20)

In the limit α → 1, the depth-averaged two-fluid model model reduces to:

∂th + ∂x(hv) = 0,

∂t(hv) + ∂x(hv2 + 1
2εkapgh2) = −εkapgh∂xb,

(3.21)

which is the Savage-Hutter model without source terms, a model that simulates
avalanches of dry granular matter [36].

In our simulations, we set the Earth pressure coefficient to be αxx = 1 and
take ǫ = 1. To compute the eigenvalues of ∂F/∂U +G(U), we use the LAPACK
package. The biggest eigenvalue is used for SR and the smallest eigenvalue is
used for SL in the NCP numerical flux.

Test case 8: Two-phase subcritical flow

As in the case of the shallow water equations with topography, also for the
two-phase flow model we consider the steady state solution for subcritical flow
over a bump. We consider the same topography (3.14). The reference solution
is found by solving:

∂xU = A−1S, (3.22)
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where U , A and S are given by:

U =
[
h(1 − α), hα

]T
, S =

[
−(1 − α)hg∂xb

−ghα∂xb

]

A =

[
u2(1 − α) − 2u2 + gh(1 − α) u2(1 − α) + gh(1 − α)

1
2 (1 + ρ)ghα 1

2 (1 − ρ)g(1 + α)h + gρhα − v2

]
,

(3.23)

with the topography derivative a known function and steady state discharges:

hu(1 − α) = q1, hvα = q2, (3.24)

with q1 and q2 integration constants. Here we take q1 = 0.2, q2 = 0.1, g = 1
and ρ = 0.5 and as initial condition h(1−α) = 1, hα = 0.6, hu(1−α) = 0.2 and
hvα = 0.1. We use the STDGFEM formulation to calculate the solution. We
consider one physical time step of ∆t = 1021 and use a pseudo time stepping in-
tegration method to solve the system of non-linear equations. We determine the
solution on a domain x ∈ [0, 20] divided into 40, 80, 160 and 320 cells. As stop-
ping criterium in the pseudo time-stepping method we take that the maximum
residual must be smaller that 10−8. The pseudo time stepping CFL number
is CFLpseudo = 0.1. At the boundaries, we define the exterior trace to be the
same as the initial condition. The numerical flux decides then what to do with
this information. The steady state solution is given in Figure 3.9. The order of
convergence is determined by computing the L2 and Lmax norm of the error,
similar as to what is done in (3.16) and (3.17). The order of convergence is given
in Table 3.5. Using linear basis functions, we obtain second order convergence
as expected.

Test case 9: Two-phase supercritical flow

We will now consider the steady state solution of two-phase supercritical flow
over a bump with (3.14) as topography. The exact solution is found by solving
(3.22)-(3.24), now with q1 = 4 and q2 = 2. Other constants remain as in test
case 9 and we use the same solution strategy. The steady state solution is
given in Figure 3.10 and the order of convergence is given in Table 3.6. Again,
using linear basis functions, we obtain second order convergence for the variables
h(1−α)+b and hα+b. We do not see second order convergence for the variables
hu(1−α) and hvα because the error for these solutions stabilizes around 10−8,
the value of the maximum residual.

Test case 10: A two-phase dam break problem

For the depth-averaged two-phase flow model we consider a dam break type
test case. Consider two mixtures separated by a membrane. The left mixture
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Figure 3.9: Test case 8: steady-state solution for a subcritical two-phase flow
calculated with STDGFEM using 320 cells. Shown are the total flow height h+b,
the flow height due to the fluid phase h(1− α), the flow height due to the solids
phase hα and the topography b.

STDGFEM

h(1 − α) + b hα + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.8171 · 10−3 - 0.2308 · 10−2 - 0.1404 · 10−2 - 0.4194 · 10−2 -

80 0.2025 · 10−3 2.0 0.5584 · 10−3 2.0 0.3537 · 10−3 2.0 0.9903 · 10−3 2.1

160 0.4871 · 10−4 2.1 0.1322 · 10−3 2.1 0.8511 · 10−4 2.1 0.2306 · 10−3 2.1

320 0.9789 · 10−5 2.3 0.2651 · 10−4 2.3 0.1712 · 10−4 2.3 0.4597 · 10−4 2.3

hu(1 − α) hv(α)

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.3672 · 10−4 - 0.1442 · 10−3 - 0.1212 · 10−4 - 0.3409 · 10−4 -

80 0.5911 · 10−5 2.6 0.3448 · 10−4 2.1 0.1791 · 10−5 2.8 0.8054 · 10−5 2.1

160 0.1049 · 10−5 2.5 0.8471 · 10−5 2.0 0.3807 · 10−6 2.2 0.2048 · 10−5 2.0
320 0.1723 · 10−6 2.6 0.2078 · 10−5 2.0 0.5115 · 10−7 2.9 0.4861 · 10−6 2.1

Table 3.5: L2 and Lmax error for h(1−α)+ b, hα+ b, hu(1−α) and hvα using
STDGFEM for test case 8.
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Figure 3.10: Test case 9: steady-state solution for a supercritical two-phase flow
calculated using STDGFEM using 320 cells. Shown are the total flow height
h + b, the flow height due to the fluid phase h(1−α), the flow height due to the
solids phase hα and the topography b.

STDGFEM

h(1 − α) + b hα + b

Ncells L2 error p Lmax error p L2 error p Lmax error p

40 0.2400 · 10−2 - 0.5674 · 10−2 - 0.2359 · 10−2 - 0.5575 · 10−2 -

80 0.6060 · 10−3 2.0 0.1402 · 10−2 2.0 0.5958 · 10−3 2.0 0.1378 · 10−2 2.0

160 0.1459 · 10−3 2.1 0.3339 · 10−3 2.1 0.1434 · 10−3 2.1 0.3280 · 10−3 2.1
320 0.2933 · 10−4 2.3 0.6678 · 10−4 2.3 0.2884 · 10−4 2.3 0.6561 · 10−4 2.3

Table 3.6: L2 and Lmax error for h(1−α)+ b, hα+ b, hu(1−α) and hvα using
STDGFEM for test case 9.
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DGFEM

Ncells L2 of h(1 − α) p L2 of hα p L2 of hu(1 − α) p L2 of hvα p

32 0.1238 · 10−1 - 0.7030 · 10−2 - 0.1263 · 10−1 - 0.1384 · 10−1 -

64 0.1125 · 10−1 0.1 0.5780 · 10−2 0.3 0.1155 · 10−1 0.1 0.8164 · 10−2 0.8

128 0.6231 · 10−2 0.9 0.3391 · 10−2 0.8 0.7114 · 10−2 0.7 0.4465 · 10−2 0.9
256 0.4379 · 10−2 0.5 0.2751 · 10−2 0.3 0.4494 · 10−2 0.7 0.3828 · 10−2 0.2

512 0.3085 · 10−2 0.5 0.1875 · 10−2 0.6 0.3536 · 10−2 0.3 0.3275 · 10−2 0.2

Table 3.7: L2 error and convergence rate for h(1 − α), hα, hu(1 − α) and
hvα using DGFEM for test case 10. The convergence rates are shown for the
solution at t = 0.175. With L2 of U we mean ||UN − U2N ||2.

has a solid volume fraction of α = 0.4 and the right mixture has a solid volume
fraction of α = 0.6. At time t = 0 we remove the membrane. We want to
know how the mixtures behave. We consider the solution on the domain [0, 1].
As initial condition we take U(x, 0) = UL if x < 0.5 and U(x, 0) = UR if
x > 0.5, where UL = [1.8, 1.2, 0, 0, 0]T and UR = [1.2, 1.8, 0, 0, 0]T . The
constants in the computation are taken as g = 1 and ρ = 0.5. We compute
the solution on a domain with 16, 32, 64, 128, 256, 512 or 1024 elements. We
consider DGFEM calculations using the linear path φ = UL + τ(UR −UL). The
solution is determined at t = 0.175 using a time step of ∆t = 0.0001. The
solutions of h(1−α), hα, b and h are depicted in Figure 3.11a, the solutions of
hu(1−α) and hvα are depicted in Figure 3.11b and the solution of α is depicted
in Figure 3.11c in which we compare the solutions on a grid with 128 elements
to the solutions computed on a grid with 10000 elements. Apart from some
small spurious oscillations obtained on the grid with 128 elements, the solutions
compare very well with the solutions obtained on the grid with 10000 elements.
Since we do not have an exact solution, we compute the order behavior using
the following approach:

||UN − U2N ||2
||U2N − U4N ||2

= 2p, (3.25)

where p is the order of convergence, UN the solution on a mesh consisting of N
cells, and || · ||2 is the L2 norm. The order behavior is shown in Table 3.7. Due
to the presence of shocks we cannot obtain second order accuracy. Instead we
obtain a convergence rate of approximately O(h1/2).
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Figure 3.11: Test case 10. The solution computed on a mesh with 128 elements
compared to the solution computed on a mesh with 10000 elements at time t =
0.175 using space DGFEM.
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3.2.3 River bed evolution under shallow flows

Test case 11: hydraulic and sediment transport through a contraction

Consider the non-dimensional form of the shallow water equations and the bed
evolution equation (for details see Tassi et al. [72, 73]):

AirUr,0 + Fik,k + GikrUr,k = 0, (3.26)

where U = [h, hu1, hu2, b]T and:

A =




ǫ 0 0 0
0 ǫ 0 0
0 0 ǫ 0
0 0 0 1


 , F =




hu1 hu2

hu2
1 + F

−2h2/2 hu1u2

hu1u2 hu2
2 + F

−2h2/2
|u|β−1u1 |u|β−1u2


 ,

Gk=1 =




0 0 0 0
0 0 0 F

−2h
0 0 0 0
0 0 0 0


 , Gk=2 =




0 0 0 0
0 0 0 0
0 0 0 F

−2h
0 0 0 0


 ,

where ǫ is the ratio between the sediment and hydrodynamic discharge and β
is a constant. In most rivers far less sediment than water is transported so that
ǫ ≪ 1. In our calculations we take ǫ = 0, β = 3 and F = 0.1.

An extra complication in this test case is matrix A in (3.26) since it is a
singular matrix when ǫ = 0. This is a problem when deriving the numerical flux
and the wave speeds SL and SR. However, since we solve the system of algebraic
equations in pseudo-time, we need the numerical flux on the space faces only in
the space-time normal direction. To obtain the numerical flux on a fixed grid,
note that the normal in the time direction is 0, so that, after augmenting with
a pseudo time derivative, (3.26) is changed to:

∂τUr + Fik,k + GikrUr,k = 0. (3.27)

The numerical flux is then determined in the space normal direction to a face
(see Tassi et al. [72, 73]). For one dimensional numerical examples solving (3.26)
including convergence rates with space and space-time DGFEM we refer to Tassi
et al. [73].

In this test case we consider hydraulic and sediment transport through a
contraction. The mesh considered is given in Figure 3.12. In Tassi et al. [73] we
show results of this test case using space DGFEM and here we use space-time
DGFEM. The physical time step is ∆t = 0.0001. For the pseudo-time stepping,
the pseudo-time CFL number is CFLpseudo = 0.8. Furthermore, if residuals
converged to a tolerance of 10−6 in the pseudo-time integration, we considered
the system to be solved. In Figures 3.13, 3.14 and 3.15 we show the mass
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flow hu, hv and the bed elevation b at time t = 0.005 which in physical time
corresponds to a few months. As in Kubatko et al. [44], we observe that the bed
experiences erosion in the converging part of the channel due to an increase in
the flow velocity and the development of a mound in the diverging part of the
channel. The results compare qualitatively well with those presented [44] and
are the same as we obtained using space DGFEM in Tassi et al. [73].
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Figure 3.12: Test case 11: the mesh.
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Figure 3.13: Test case 11: flow and sediment transport in a contraction channel:
mass flow hu(x) at time t = 0.005.
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Figure 3.14: Test case 11: flow and sediment transport in a contraction channel:
mass flow hv(x) at time t = 0.005.

3.3 Effect of the path in phase space on the nu-
merical solution

3.3.1 Polynomial paths

In the numerical test cases discussed in the previous sections a linear path was
taken: φ = UL + τ(UR − UL). In this section, we will investigate the effect
of different paths on our numerical results. To determine this effect we again
consider test case 10 in Section 3.2.2 for which we expect to find the biggest
effect of the path due to the shock waves in the solution. We use the following
paths and note that in one dimension property (H4) can be neglected:

φ2v1 = UL + τ2(UR − UL), φ2v2 = UR + (1 − τ)2(UL − UR),

φ5v1 = UL + τ5(UR − UL), φ5v2 = UR + (1 − τ)5(UL − UR),

φ20v1 = UL + τ20(UR − UL), φ20v2 = UR + (1 − τ)20(UL − UR).

(3.28)

In Figure 3.16, h(1 − α), hα, b and h are shown on the whole domain and also
a zoom-in on the left shock wave. The deviations shown in these figures are
approximately also seen in the mass flow variables and the void fraction.

In these computations it is important to have a good numerical integration
scheme to approximate the path integral. Incorrectly approximating the path
integral results in solutions having incorrect faster or slower shock speeds. A
two-point Gauss integration scheme is sufficient when taking φ linear or when
using φ2v1 and φ2v2. For the other paths we split the domain [0, 1] into 8 non-
intersecting uniform intervals and within each interval we evaluate the integral
in the two Gauss points corresponding to that particular interval. To conclude
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Figure 3.15: Test case 11: flow and sediment transport in a contraction channel:
bottom profile b(x) at time t = 0.005.

for this test case, when properly integrated any choice of paths in (3.28) leads
to the same numerical solution with only minor differences.

3.3.2 Toumi paths

In this section we will consider paths similar to those chosen in Toumi [75].
These paths are different from those of the previous section in that these paths
are C0. We will compare the solutions determined with the following five paths
with the solution determined with a linear path:
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(3.29)

In the implementation the integrals are computed using a two-point Gauss
integration rule. In Figure 3.17, h(1 − α), hα, b and h are shown on the whole



3.3 Effect of the path in phase space on the numerical solution 55

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

h
(1

−
α

),
h

α
,b

,h

 

 

h(1−α) 1

hα 1

h 1

h(1−α) 2v1

hα 2v1

h 2v1

h(1−α) 5v1

hα 5v1

h 5v1

h(1−α) 20v1

hα 20v1

h 20v1

h(1−α) 2v2

hα 2v2

h 2v2

h(1−α) 5v2

hα 5v2

h 5v2

h(1−α) 20v2

hα 20v2

h 20v2

b

(a) The solution on the whole do-
main.

0.095 0.1 0.105 0.11

1.5

2

2.5

3

x

h
(1

−
α

),
h

α
,h

 

 h(1−α) 1

hα 1

h 1

h(1−α) 2v1

hα 2v1

h 2v1

h(1−α) 5v1

hα 5v1

h 5v1

h(1−α) 20v1

hα 20v1

h 20v1

h(1−α) 2v2

hα 2v2

h 2v2

h(1−α) 5v2

hα 5v2

h 5v2

h(1−α) 20v2

hα 20v2

h 20v2

(b) The solution zoomed in on the
left shock wave.

Figure 3.16: Solution of h(1 − α), hα, b and h calculated on a mesh with 1024
elements at time t = 0.175 using the paths defined in (3.28).

domain and also zoomed in on the left shock wave. The deviations shown in
these figures are approximately also seen in the mass flow variables and the
void fraction. We see that the final solution determined with the paths given in
(3.29) are all very similar. The choice of one of these paths does not have a big
effect on the final solution compared to the linear path.

3.3.3 Refining the mesh

As a final check we further refine our mesh. We will calculate the solution on
a mesh with 10000 elements. We only do this for the linear path, φ20v1 (see
(3.28))and φT1 (see (3.29)) and compare these solutions with the numerical
solution determined with the linear path on a mesh with 1024 elements. In
Figure 3.18, h(1 − α), hα, b and h are shown on the whole domain and also
zoomed in on the left shock wave. The deviations shown in these figures are
approximately also seen in the mass flow variables and the void fraction. To
obtain these figures, the integral of the nonconservative product for each path
was evaluated differently. For the linear path a two point Gauss integration
scheme was used for the whole domain [0, 1]. For the path φ20v1 we divided the
domain [0, 1] into 16 nonintersecting uniform domains and within each domain
we used again a two point Gauss integration scheme. For the path φT1 the
domain [0, 1] was divided into 8 nonintersecting uniform domains and within
each domain we used a two point Gauss integration scheme. As we see in these
figures, the differences in the numerical solution for all the paths are minimal.
The slight differences in the shock speed are more likely to be caused by the
numerical integration scheme than the difference in the path. If we were to
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Figure 3.17: Solution of h(1 − α), hα, b and h calculated on a mesh with 1024
elements at time t = 0.175 using the paths defined in (3.29).

determine the numerical solution using the path φ20v1 by dividing the domain
[0, 1] into 8 nonintersecting uniform domains instead of 16, the differences in
shock speed in comparison to the other paths will increase, so it is important
to have a good approximation for the integral of the nonconservative product.
We conclude that it is important to have a good numerical integration scheme
to approximate the path integral. Using a linear path, a two points Gauss
integration scheme, without refinement, suffices. We saw that it does not matter
which path is chosen, but choosing the linear path, due to the simple integration
scheme, is by far the cheapest and easiest choice.

3.3.4 Contact waves

In Parés and Castro [58] a test case is presented for the shallow water equations
in which they state that the selection of the path is critical in order to satisfacto-
rily capture stationary contact discontinuities related to bottom discontinuities
(see [58]). We repeat this test case. Consider the shallow water equations given
by (3.6) and (3.7). Following Parés and Castro [58], the initial condition is
given by U = UL if x ≤ 0 and U = UR if x > 0, where UL = [0, 1,

√
2g]T and

UR = [−1, 0.6527036446614,
√

2g]T if x > 0, where g = 9.81. These initial con-
ditions are such that the states UL and UR are connected by an entropic contact
discontinuity (see [58]). The boundary conditions are given by: b(−5, t) = 0,
h(−5, t) = 1, hu(−5, t) =

√
2g, b(5, t) = −1. The remaining boundary data are

set equal to the data calculated at the boundary from inside the domain. The
steady state solution is calculated using a physical time step of ∆t = 1021 and
a pseudo CFL number of CFLpseudo = 0.8. We consider the solution on a mesh
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Figure 3.18: Solution of h(1−α), hα, b and h calculated on a mesh with 10000
elements at time t = 0.175 using the linear path, φ20v1 and φT1.

with 1000 elements on which the contact wave falls exactly on a face, and on
a mesh with 999 elements so that the contact wave falls exactly in the middle
of an element. The effect of three paths are considered, namely the linear path
φ(τ ;UL, UR) = UL + τ(UR − UL) and two Toumi like paths:

φT1(τ ;UL, UR) =

{(
UL

1 + 2τ(UR
1 − UL

1 ), UL
2

)
, for τ ∈ [0, 1

2 ](
UR

1 , UL
2 + (2τ − 1)(UR

2 − UL
2 )

)
, for τ ∈ [ 12 , 1]

φT2(τ ;UL, UR) =

{(
UL

1 , UL
2 + 2τ(UR

2 − UL
2 )

)
, for τ ∈ [0, 1

2 ](
UL

1 + (2τ − 1)(UR
1 − UL

1 ), UR
2

)
, for τ ∈ [ 12 , 1].

Note that the path for U3 = hu is irrelevant since the nonconservative product
for the shallow water equations only involve b and h. The solution on the mesh
with 1000 elements is shown in Figure 3.19 and the solution on the mesh with
999 elements is shown in Figure 3.20. We see that the solution of a steady con-
tact discontinuity experiences a similar dependence on the path as observed by
Parés and Castro [58], also after refining the mesh to 10000 and 9999 elements,
respectively. The numerical dissipation introduced when the contact disconti-
nuity is not exactly at an element face has, however, a strong regularizing effect
(compare Figures 3.19 and 3.20) and significantly reduces the dependence of
the solution on the path. This effect will even be stronger in multi-dimensional
problems since the discontinuities then rarely coincide with mesh lines, but it is
always important to check the dependence of the solution on the chosen path.
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Figure 3.19: A comparison of the computed solution of a contact discontinuity
related to the discontinuous topography with the exact solution. The solution was
computed on a mesh with 1000 elements using a physical time step of ∆t = 1021

and a pseudo CFL number CFLpseudo = 0.8.
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Figure 3.20: A comparison of the computed solution of a contact discontinuity
related to the discontinuous topography with the exact solution. The solution was
computed on a mesh with 999 elements using a physical time step of ∆t = 1021

and a pseudo CFL number CFLpseudo = 0.8.



CHAPTER 4

Discontinuous Galerkin finite element method
for shallow two-phase flows

In this chapter we present a discontinuous Galerkin finite element method for a depth-

averaged two-phase flow model. This model contains nonconservative products for

which we developed a discontinuous Galerkin finite element formulation in Chapter

2. We qualitatively validate the model against a laboratory experiment and show the

abilities of the model to capture physical phenomena. To be able to perform these

test cases, a WENO slope limiter is investigated in conjunction with a discontinuity

detector to detect regions where spurious oscillations appear.

4.1 Depth-averaged two-phase flows

In shallow flows, the characteristic height H of the flow is typically much smaller
than its characteristic length L, H/L = ε ≪ 1. Variations in the vertical are
small and we can simplify the governing equations by averaging the flow over the
depth. In doing so, depth-averaged quantities are assumed to be independent
of the vertical coordinate, at leading order in ε. In this section we introduce
the depth-averaged two-phase flow equations derived by Le [45]. Note that
the depth-averaged two-phase flow equations derived by Le [45] are slightly
different from the depth-averaged two-phase flow equations derived by Pitman
and Le [62]. The difference is that the momentum of the mixture of the Le
model can be written in flux conservative form, while this is not the case for the
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momentum of the mixture of the Pitman and Le model.

Le [45] derived a depth-averaged flow model by depth-averaging the three
dimensional continuum model for two-phase flows as derived by Jackson [38] (see
Appendix B for the three dimensional model). Using the summation convention
on repeated indices and the comma notation to denote partial differentiation,
the scaled non-dimensional depth-averaged flow model is:

Ui,t + Fik,k + GikrVr,k = Si, i, r = 1, ..., 6, k = 1, 2. (4.1)

Note that GikrVr,k is a nonconservative product. In (4.1)
U = [h(1 − α), hα, hαvi, h(1 − α)ui]

T , V = [h, α, vi, ui]
T and

Fk =




h(1 − α)uk

hαvk

hαvivk + ε(1 − ρ)ϕikα 1
2g3h

2

h(1 − α)uiuk


 , Gk =




0 0 0 0
0 0 0 0

εραg3h 0 0 0
ε(1 − α)g3h 0 0 0


 ,

S =




0
0

(1 − ρ)(−εϕik∂kb + ϕi3)αg3h + hFD
i + gihα − ραCD|u|ui/ε − ερhαg3∂ib

−ε(1 − α)g3h∂ib − hFD
i /ρ + h(1 − α)gi − (1 − α)CD|u|ui/ε


 .

Note that compared with the model by Le [45], we have added extra friction
terms with the drag coefficient CD as a leading order turbulence parameteriza-
tion.

The orientation of the Cartesian coordinate system is shown in Figure 4.1
in which θ is the angle of the x1-x2 plane with the horizontal. The depth-
averaged quantities in the above model are constant in the x3 direction and
are the particle volume fraction α, the fluid velocity vector u and the solids
velocity vector v. The flow depth is given by h and the bottom topography by
b. The constants ε = H/L and ρ = ρf/ρs represent the height to length ratio
of the flow and the ratio between the fluid density ρf and the solids density
ρs, respectively. The gravity vector is given by ~g = [g1, g2,−g3]

T in which
g3 is the vertical component of the gravity (see Figure 4.1) and CD is a drag
coefficient. The above quantities are all scaled and dimensionless. To obtain
the variables in dimensional form, denoted by (·)∗, we have used the following
scalings: [x∗, y∗] = L[x, y], t∗ =

√
L/g∗t, [u∗

1, u
∗
2] =

√
g∗L[u1, u2], [v∗

1 , v∗
2 ] =√

g∗L[v1, v2], v∗
T =

√
g∗LvT , [g∗1 , g∗2 , g∗3 ]T = g∗g[sin(θ), 0, cos(θ)]T with g the

gravity constant.

A closure needs to be given for the drag function FD and we follow Pitman
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x1

x3

x2

g3

g1g2

θ

Figure 4.1: Orientation of the coordinate system and the gravity vector.

and Le [62] by taking FD
i = β(ui − vi) in which β is given by:

β =
(1 − ρ)α

vT (1 − α)n
, n =





3.65 for Ret < 0.2,

4.35Re−0.03
t − 1 for 0.2 < Ret < 1,

4.45Re−0.1
t − 1 for 1 < Ret < 500,

1.39 for 500 < Ret,

where Ret = dρfvT /µf , in which d is the particle diameter, ρf the fluid density,
µf the fluid viscosity and vT the terminal velocity of an isolated particle falling
in the fluid. We remark that as 1−ρ increases, the drag function FD makes the
system (4.1) increasingly stiffer. We are, however, interested in the case where
ρ is approximately 0.9. In this situation the model does not have stiff source
terms and no special algorithms are needed to deal with stiffness.

The functions ϕ were introduced by Pitman and Le [62] to relate basal and
diagonal shear stresses to the normal stress in the solids phase stress tensor in
the 3-dimensional two-phase model before depth-averaging. The functions ϕ are
given by:

ϕi3 = − vi

||v|| tan(φbed), i = 1, 2, ϕii = k∓, i = 1, 2

ϕ12 = −sign(∂2v1) sin(φint)k
∓, ϕ21 = −sign(∂1v2) sin(φint)k

∓,

k∓ = 2
1 ∓

√
1 − cos2(φint)(1 + tan2(φbed))

cos2(φint)
− 1,

in which the “−” in the “∓” applies when ∂kvk > 0 and the “+” applies when
∂kvk < 0. Furthermore, || · || is the Euclidean norm, φint is the internal angle of
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Figure 4.2: Regimes of hyperbolicity for the depth-averaged model. For the values
of α and |u − v| in the shaded area the model is elliptic.

friction, which measures how layers of solid particles slide over one another and
φbed is the basal angle of friction, indicating how easily solid particles slide over
the bottom [35].

To determine whether the depth averaged model is hyperbolic, we need to
determine their eigenvalues. If all eigenvalues are real and distinct, the model is
hyperbolic. Deriving the eigenvalues for the depth-averaged model is not trivial,
so eigenvalues are computed numerically for a number of given parameters.
Consider the case in which the topography is flat, b = 0. We take h = 1,
ρ = 0.9, g3 = 1 and we assume k∓ = k−. Furthermore, we take φbed = 14.75◦

and φint = 24.5◦ which hold for fine glass particles [7]. For different height to
length ratios, ranging from ε = 0.001 to ε = 1, we determine the eigenvalues as
a function of the particle volume fraction α and the absolute difference between
the phase velocities |u − v|. In Figure 4.2 we show for which values of α and
|u − v| the depth-averaged model is not hyperbolic (in the shaded areas some
of the eigenvalues are not real). We see that the region for which the model is
not hyperbolic decreases as ε decreases. In this chapter we are only interested
in cases where the model is hyperbolic. When the model is not hyperbolic, a
different numerical approach needs to be introduced which is not treated in this
chapter.
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4.2 The DGFEM discretization

In this section we present a space-time DGFEM formulation for the depth-
averaged two-phase flow model. We remark however that the space DGFEM
formulation is very similar and for some of the numerical test cases we will
apply space DGFEM. For more on space DGFEM we refer to Appendix A and
Cockburn and Shu [18].

We consider the solution in the open space-time domain E ⊂ R3 using the
definition of the space-time elements as given in Section 2.2.1. Furthermore, in
this chapter, we consider the solution only on a fixed grid. We consider linear
approximations of U(t, x̄) ∈ R6 and test functions W (t, x̄) ∈ R6 in the function
spaces defined in Section 2.2.2.

4.2.1 Basis functions

Polynomial approximations for the trial function U and the test functions W in
each element K ∈ T n

h are introduced as:

U(t, x̄)|K = Ûmψm(t, x̄) and W (t, x̄)|K = Ŵlψl(t, x̄), (4.2)

with ψm the basis functions, x̄ ∈ R2, and expansion coefficients Ûm and Ŵl,
respectively, for m, l = 0, 1, 2, 3. The basis functions ψm are given by ψ0 = 1
and ψm = ϕm(t, x̄) for m = 1, 2, 3 where the functions ϕm(x) in element K
are related to the basis functions ϕ̂m(ξ), with ϕ̂m(ξ) ∈ P 1(K̂) and ξ the local
coordinates in the master element K̂, through the mapping GK: ϕm = ϕ̂m◦G−1

K .

4.2.2 The weak formulation

Due to the nonconservative products (4.1) cannot be transformed into diver-
gence form. This causes problems once the solution becomes discontinuous,
because the weak solution in the classical sense of distributions then does not
exist. Consequently, standard space-time DGFEM discretizations cannot be
applied. In Chapter 2 we derived a discontinuous Galerkin finite element weak
formulation for general hyperbolic equations with nonconservative products and
we apply this weak formulation here as well.

We refer to Chapter 2 for the derivation of the weak formulation for (4.1).
The main criterium posed on the weak formulation is that the formulation must
reduce to that for the conservative system if the system of nonconservative
partial differential equations can be transformed into conservative form. The
weak formulation for (4.1) is given by:
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Find a U ∈ Vh such that for all W ∈ Vh:

0 =
∑

K∈T n
h

∫

K

(
− Wi,0Ui − Wi,kFik + WiGikrVr,k − WiSi

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

WL
i UL

i dK −
∫

K(t+n )

WL
i UR

i dK

)

+
∑

S∈Sn

∫

S

(WL
i − WR

i )P̂nc
i dS

+
∑

S∈Sn

∫

S

{{Wi}}
( ∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS.

(4.3)

The last term makes it different from standard discontinuous Galerkin finite el-
ement formulations. It is needed to introduce a measure for the nonconservative
product where U is discontinuous. Note that an extra function, φ(τ ;UL, UR),
has been introduced to deal with the regularization of U across the discontinuity.
In Chapter 3 the effect of the choice of φ(τ ;UL, UR) on the numerical solution
was investigated. We concluded that the numerical diffusion has a regulariz-
ing effect across discontinuities, which significantly reduces the dependence of
the solution on φ(τ ;UL, UR), so that often it does not matter in practice how
φ(τ ;UL, UR) is chosen. We adopt a linear path: φ(τ ;UL, UR) = UL+τ(UR−UL).

Furthermore, we use here the NCP numerical flux P̂nc(UL, UR, n̄L) designed in
Chapter 2 for systems containing nonconservative products as a generalization

of the HLL flux [74]. The NCP numerical flux P̂nc(UL, UR, n̄L) reads:

bP
nc
i (UL, UR, n̄

L) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

F L
ikn̄L

k − 1

2

R

1

0
Gikr(φ̄(τ ; UL, UR)) ∂φ̄r

∂τ
(τ ; UL, UR) dτn̄L

k

if SL > 0,

{{Fik}}n̄
L
k + 1

2

`

SRŪ∗
i + SLŪ∗

i − SLUL
i − SRUR

i )

if SL < 0 < SR,

F R
ikn̄L

k + 1

2

R

1

0
Gikr(φ̄(τ ; UL, UR)) ∂φ̄r

∂τ
(τ ; UL, UR) dτn̄L

k

if SR < 0,

(4.4)

with Ū∗ given by:

Ū∗
i =

SRUR
i − SLUL

i + (FL
ik − FR

ik)n̄L
k

SR − SL
−

1

SR − SL

∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k . (4.5)

Note that the first terms on the right hand side of (4.4) are in each case the
upwind or unstable numerical fluxes. The wave speeds SL and SR in the numer-
ical flux are usually approximated by the minimum and maximum eigenvalues
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of the Jacobian matrix. The characteristic polynomial of the Jacobian matrix
of the depth-averaged model, ∂F/∂U +G is c(λ) = (λ−qv)(λ−qu)p(λ) in which
p(λ) = λ4 + a1λ

3 + a2λ
2 + a3λ + a4, where

a1 = − 2(qu + qv),

a2 =q2
u + q2

v + 4quqv − εg3h(1 − α + ρα),

− 1
2εg3h(1 − ρ)(1 + α)(ϕ11n

2
1 + ϕ22n

2
2 + ϕ12n1n2 + ϕ21n1n2)

a3 = − 2quqv(qu + qv) + 2qvεg3h(1 − α) + 2ερg3αhqu

+ 2qu( 1
2εg3h(1 + α)(1 − ρ)(ϕ11n

2
1 + ϕ22n

2
2 + ϕ12n1n2 + ϕ21n1n2)),

a4 =q2
uq2

v − q2
u( 1

2hεg3(1 − ρ)(1 + α)(ϕ11n
2
1 + ϕ22n

2
2 + ϕ12n1n2 + ϕ21n1n2))

+ 1
2ε2g2

3h2(1 − ρ)(1 − α)(ϕ11n
2
1 + ϕ22n

2
2 + ϕ12n1n2 + ϕ21n1n2)

− q2
vεg3h(1 − α) − q2

uερg3αh.

(4.6)

Two eigenvalues are λ1 = qv and λ2 = qu. Since explicitly solving the quar-
tic polynomial p(λ) = 0 yields rather unwieldy relations, we approximate the
remaining four eigenvalues.

We approximate p(λ) by p̃(λ) = (λ−qu−A)(λ−qu+A)(λ−qv−B)(λ−qv+B)
and expand p̃ as p̃ = λ4 + a1λ

3 + b2λ
2 + b3λ + b4 with coefficients:

b2 = q2
u + q2

v + 4quqv − (A2 + B2),

b3 = 2qvA2 + 2quB2 − 2qvqu(qu + qv),

b4 = q2
vq2

u − q2
uB2 − q2

vA2 + A2B2.

(4.7)

Note that by choosing

A =
√

εg3h(1 − α),

B =
√

1
2hεg3(1 − ρ)(1 + α)(ϕ11n2

1 + ϕ22n2
2 + ϕ12n1n2 + ϕ21n1n2),

(4.8)

the coefficients ai and bi almost match. We approximate the solutions to p(λ)
now as λ3,4 = qu ±A and λ5,6 = qv ±B. The error in the approximation of the
roots is then proportional to p(λ3,4) = O(ε2) and p(λ5,6) = O(ε).

As mentioned above, φ(τ ;UL, UR) had to be chosen and we adopted
φ(τ ;UL, UR) = UL + τ(UR − UL). This choice of the path presents us the op-
portunity to exactly determine the integral due to the nonconservative product
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in (4.3):

∫ 1

0

Gkr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k =




0
0

−ερg3[[h]]
∫ 1

0
αhdτ

−ερg3[[h]]
∫ 1

0
αhdτ

−εg3[[h]]
∫ 1

0
(1 − α)h dτ

−εg3[[h]]
∫ 1

0
(1 − α)h dτ




,

(4.9)
in which

∫ 1

0

αhdτ = 1
3 (αLhL + 1

2 (αRhL + αLhR) + αRhR),

∫ 1

0

(1 − α)h dτ = {{h}} − 1
3 (αLhL + 1

2 (αRhL + αLhR) + αRhR).

4.2.3 Pseudo-time stepping

By replacing U and W in the weak formulation (4.3) by their polynomial ex-
pansions (4.2), a system of algebraic equations for the expansion coefficients of
U is obtained. For each physical time step, the system can be written as:

L(Ûn; Ûn−1) = 0. (4.10)

This system of coupled non-linear equations is solved by adding a pseudo-time
derivative of the primitive variables V = [h, α, vi, ui]

T , hence (4.10) becomes:

M∂V̂ n

∂τ
= −L(V̂ n; V̂ n−1), M =

∫

K

φ
∂U

∂V
dK, (4.11)

which is integrated to steady-state in pseudo-time. Following Van der Vegt and
Van der Ven [79], we use the explicit Runge-Kutta method for inviscid flow with
Melson correction given by:

Algorithm 1 Five-stage explicit Runge-Kutta scheme:

1. Initialize Ŷ 0 = V̂ .

2. For all stages s = 1 to 5:

(I + αsλI)Ŷ s = Ŷ 0 + αsλ
(
Ŷ s−1 −M−1L(Ŷ s−1; V̂ n−1)

)
.

3. Update V̂ = Ŷ 5.

The coefficient λ is defined as λ = ∆τ/∆t, with ∆τ the pseudo-time step and
∆t the physical time step. The Runge-Kutta coefficients αs use are [79]:
α1 = 0.0797151, α2 = 0.163551, α3 = 0.283663, α4 = 0.5 and α5 = 1.0.
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Figure 4.3: Slope limiter in 2D.

4.2.4 Slope limiter and discontinuity detector

In numerical discretizations of the weak formulation (4.3), spurious oscillations
generally appear near discontinuities. Using the Krivodonova discontinuity de-
tector [43], we apply a slope limiter only near discontinuities to deal with these
spurious oscillations. We use the slope limiter given in [51] which we describe
briefly here for reasons of clarity.

The idea of the slope limiter is to replace the original polynomial P0 by
a new polynomial P that uses the data um of the midpoints of the original
element in element Kk and its neighboring elements ua, ub, uc and ud. Eight
polynomials are constructed, 4 Lagrange polynomials, Pi, i = 1, 2, 3, 4 and 4
Hermite polynomials Pi, i = 5, 6, 7, 8. For the Hermite polynomials we also
need the physical gradient of the data in the neighboring elements at the points
~x, i.e., ∇ua, ∇ub, ∇uc and ∇ud (see Fig. 4.3).

To construct the Lagrange polynomials consider the surface through xm, xa

and xb. Name the polynomial through this surface P1 with P1 = P̂ a
1 +P̂ b

1x+P̂ c
1 y.

The coefficients P̂ a
1 , P̂ b

1 and P̂ c
1 are found by solving:




1 xm ym

1 xa ya

1 xb yb







P̂ a
1

P̂ b
1

P̂ c
1


 =




um

ua

ub


 .

In the same way, polynomials P2, P3 and P4 are constructed by considering the
remaining three surfaces.
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Each of the four Hermite polynomials are determined by looking at the
current element and one of the neighbors, e.g., the first Hermite polynomial,
P5, is found by looking at the neighboring element sharing face S0. In the
midpoint xb, the gradient of the solution is ∇ub, while the solution in the
midpoint of the current element is um. The first Hermite polynomial is given
by: P5 = P̂ a

5 + P̂ b
5x + P̂ c

5 y where:

P̂ a
5 = um − xb · ∇ub,

P̂ b
5 = ∂xub in xb,

P̂ c
5 = ∂yub in xb.

In the same way, polynomials P6, P7 and P8 are constructed by considering the
remaining three surfaces.

The linear approximation of the original polynomial is determined just like
the Hermite polynomials. In the midpoint xm, the solution is um and the
gradient is ∇um. The linear approximation is: P0 = P̂ a

0 + P̂ b
0x + P̂ c

0 y where:

P̂ a
0 = um − xm · ∇um,

P̂ b
0 = ∂xum in xm,

P̂ c
0 = ∂yum in xm.

Now project Pj , j = 0, ..., 8, onto the DG space and solve for (û0)j , (û1)j and
(û2)j :




∫
Kk

ψ0ψ0 dK
∫

Kk
ψ0ψ1 dK

∫
Kk

ψ0ψ2 dK∫
Kk

ψ1ψ0 dK
∫

Kk
ψ1ψ1 dK

∫
Kk

ψ1ψ2 dK∫
Kk

ψ2ψ0 dK
∫

Kk
ψ2ψ1 dK

∫
Kk

ψ2ψ2 dK







(û0)j

(û1)j

(û2)j


 =




∫
Kk

ψ0Pj dK∫
Kk

ψ1Pj dK∫
Kk

ψ2Pj dK


 .

After the polynomial reconstruction is performed, an oscillation indicator is used
to assess the smoothness of Pi. The oscillation indicator for the polynomial
Pi, i = 0, ..., 8, is defined as oi = ||∇Pi||, with || · || the Euclidian norm. The
coefficients of the new solution u in element Kk are constructed as the sum of
all the polynomials multiplied by a weight, ûq =

∑8
i=0 wi(ûq)i, q = 0, 1, 2, in

which the weights are computed as:

wi =
(ǫ + oi(Pi))

−γ

∑8
j=0(ǫ + oj(Pj))−γ

, (4.12)

where γ is a positive number and ǫ a small number to avoid division by 0.
Take for example ǫ = 10−12. The effect of γ and the combination of polyno-
mials (Lagrange and original or Lagrange, original and Hermite) is tested in
Section 4.3.2.
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The discontinuity detector introduced in Krivodonova et al. [43] defines for
each element Kn

k a measure of the discontinuity Ik. This will indicate regions
where the gradient of a variable V is large. For the depth-averaged two-phase
flow equations, depending on the situation, we choose either V = h or V = α.
The discontinuity detector is given by:

In
k = max(In

k (h), In
k (α)), In

k (V) =

∑
Sm∈∂Kn

k

∫
Sm

|VR − VL| dS
h

(p+1)/2
K |∂Kn

k |||V||∞
, (4.13)

where hK is the cell measure defined as the radius of the largest circumscribed
circle in the element Kn

k , p the polynomial order, |∂Kn
k | the surface area of the

element and || · ||∞ the maximum norm. The solution is estimated [43] to be
smooth when Ik < 1 and non-smooth when Ik > 1.

4.3 Verification

4.3.1 Sub- and supercritical flow over a bump

We consider the 1D steady-state solution of sub- and supercritical flow over a
bump (see also Chapter 3). This is a popular test case to verify shallow water
codes [14, 31, 47, 71, 87] and we extend the test case to the depth-averaged
two-phase flow model. For this test case we consider:
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0
0
S3

S4

0




, (4.14)

where

G31 = εραg3h, G35 = ε(1 − ρ)ϕ11g3hα + ερhαg3,

G41 = ε(1 − α)g3h, G45 = ε(1 − α)g3h,

S3 = hFD, S4 = −hFD/ρ.

Note that we take the given topography to be formally unknown in the system.
This leads to a well-balanced scheme (see Chapter 3). Let the upstream variables
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be denoted as h0, α0, u0 and v0. For both the subcritical and supercritical test
case we take h0 = 1, u0 = 1, v0 = 1, and α = 0.3.

We consider the solution on a domain x ∈ [0, 1] in which the topography is
given by [87]:

b(x) =

{
0.2 − 20(x − 0.5)2 if 0.4 ≤ x ≤ 0.6,

0 otherwise.

As initial condition we take h + b = 1, u = u0, v = v0 and α = α0. At the
boundaries we define the exterior trace to be the same as the initial condition.
For the subcritical test case we take g3 = 108 while for the supercritical test case
g3 = 25. Other parameters in the model are chosen as: ε = 0.01, ρ = 0.9, θ = 0◦,
ϕ11 = 2(1 −

√
1 − cos2(φint)(1 + tan2(φbed)))/ cos2(φint) − 1, φint = 24.5◦ and

φbed = 14.75◦. In FD, the parameters are ρf = 1000 kg m−3, vT = 0.143ms−1,
d = 10−3 m and µf = 10−3 kg (ms)−1.

We compute the order of convergence by comparing the space-time discon-
tinuous Galerkin finite element solution of (4.14) to an “exact”solution of (4.14).
This “exact” solution is found by setting the time-derivative terms in (4.14) to
zero and then solving the system of ODE’s with a RK45 method on a grid with
10000 points.

In Figure 4.4 we plot the numerical solutions of the total flow height h + b,
topography b, flow depth h, particle volume fraction α and the velocities u and v
for sub- and supercritical flow. The order of convergence is given for the mixture
momentum hαv + ρh(1 − α)u as well as the topography b in Table 4.1 for sub-
and supercritical flow. The reason why we also show the order of convergence
for the topography b is because it is taken formally as an unknown in the system
(as in Chapter 3) and we show that the topography converges at the same rate
as the other unknowns. For a linear polynomial approximation we obtain as
expected second order convergence.

4.3.2 The slope limiter

We consider a Riemann problem to test the effect of the polynomials (Lagrange,
original and/or Hermite) in the slope limiter and the parameter γ (see (4.12)) in
the space-time DGFEM discretization. For this test case we neglect the source
terms. Furthermore, we simplify the expressions for ϕ11, ϕ22, ϕ12 and ϕ21 by
taking ϕ11 = ϕ22 = 1 and ϕ12 = ϕ21 = 0. Other parameters in the model are
chosen as ρ = 1, g = 1, ε = 1 and θ = 0◦. We consider the solution on a domain
[0, 1] × [0, 1] divided into 32 × 32 elements. A physical time step of ∆t = 0.005
is used and we consider the solution at final time T = 0.37. We consider the
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Figure 4.4: Steady-state solution on a grid with 80 elements.
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Subcritical flow

Ncells b p h(αv + ρ(1 − α)u) p

10 1.5171 · 10−2 - 4.2299 · 10−3 -

20 3.7397 · 10−3 2.0 1.0484 · 10−3 2.0

40 9.3222 · 10−4 2.0 2.9977 · 10−4 1.8
80 2.3296 · 10−4 2.0 8.1480 · 10−5 1.9

Supercritical flow

Ncells b p h(αv + ρ(1 − α)u) p

10 1.2910 · 10−2 - 4.0446 · 10−4 -

20 3.4861 · 10−3 1.9 1.4343 · 10−4 1.5

40 9.0211 · 10−4 2.0 3.7399 · 10−5 1.9
80 2.2925 · 10−4 2.0 9.4394 · 10−6 2.0

Table 4.1: Sub- and supercritical flow: L2 error for the topography b and the
total momentum h(αv + ρ(1 − α)u) and the convergence rate p.

following two-dimensional Riemann problem:

V (t = 0) =

{
V L for x < 0.5 and y < 0.5,

V R otherwise,

in which V is the vector of primitive variables and V L = [1, 0.4, 0, 0, 0, 0]T and
V R = [0.5, 0.2, 0, 0, 0, 0]T . At the boundaries we set u1 = u2 = v1 = v2 = 0.

The slope limiter is used in element Kn
k only when the discontinuity detector

In
k > εkriv. In this test case we take εkriv = 1.

In Figure 4.5 we compare the solution of the volume fraction α along the di-
agonal x = y as computed using a slope limiter with the combination Lagrange
and original polynomials; and, the combination Lagrange, Hermite and original
polynomials. For each combination we furthermore compare the solution using
γ = 1 and γ = 10 in (4.12). We see that the least numerical dissipation is intro-
duced using the combination Lagrange and original polynomials while γ = 1.
Increasing γ to γ = 10 introduces more smoothing to the solution. Also adding
the Hermite polynomials to the combination Lagrange and original polynomials
increases the amount of numerical dissipation. This can also be seen in Fig-
ure 4.6 where we compare the flow height h calculated using the combination
Lagrange and original polynomials with γ = 1; and, the combination Lagrange,
Hermite and original polynomials with γ = 10. We plot the results per element
to show the discontinuities at the element faces which would not be visible with
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Figure 4.5: Solution of the volume fraction α at T = 0.37 along the diagonal
x = y as computed using the combination of Lagrange and original polynomials
(LO) in the slope limiter or the combination of Lagrange, Hermite and original
polynomials (LHO) with γ = 1 or γ = 10.

post-processing. We remark that without the slope limiter it was not possible
to do this test case because α became less than zero in regions around large dis-
continuities due to undershoots. In Figure 4.7 we indicate the areas where the
discontinuity detector detects large discontinuities. In these regions the slope
limiter is used. The scheme is robust for a wide range of γ values, but for ac-
curacy reasons γ should be chosen as small as possible, because this minimizes
the numerical dissipation. For the Riemann problem presented here, the best
combination would be the Lagrange and original polynomials with γ = 1. As
can be seen in Figures 4.5 and 4.6 there is a wave crest which can be captured
using the combination Lagrange and original polynomials with γ = 1 which is
not captured using the combination Lagrange, Hermite and original polynomials
with γ = 10 since this combination introduces too much numerical dissipation.
For other applications though, more numerical dissipation may be desirable to
avoid large over- and undershoots which can be achieved by slightly increasing
the value for γ and/or using a different combination of polynomials.
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Figure 4.6: Solution of the flow height h at T = 0.37. Too much numerical
dissipation is introduced in (b) since there is a wave crest in (a) which is not
captured in (b).
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Figure 4.7: The shaded area indicates where the discontinuity detector has large
values and where the slope limiter is used; situation at T = 0.37.

4.4 Validation

In [2, 4, 71] laboratory experiments of shallow water and in [82] laboratory
experiments of shallow granular flow through a contraction were compared to
numerical results. We will simulate a two-phase flow mixture consisting of solid
particles in water in which the density of the solid particles is slightly higher
than that of water. We will simulate the flow of this mixture as it enters a
contraction. Initially we start with a flow with very low particle volume fraction
(5 %) and the flow reaches a steady-state with oblique jumps. We then perturb
this steady-state by increasing the particle volume fraction at the inlet to 30
% for a short period. This perturbation was sufficient to perturb the flow with
oblique jumps to one with an upstream moving shock as was observed by Akers
and Bokhove [2] (see Figure 1.2). We now describe the numerical setup.

In our numerical calculations we consider a channel in the Cartesian coordi-
nate system (x, y) ∈ [0, 10] × [−0.5, 0.5]. The channel converges from x = 4 to
x = 4.7228 so that y ∈ [−0.3, 0.3] and diverges from x = 4.7228 to x = 6.1685
(see Figure 4.8). As initial condition we take h = 0.2, α = 0.05, v1 = u1 = 0.5
and v2 = u2 = 0. Define hw = h(1 − α). At the inflow boundary we specify
hw = 0.19, the x-components of the velocities, u1 = 0.5 and v1 = 0.5, the
y-components of the velocities, u2 = 0 and v2 = 0, and the particle volume frac-
tion α. Initially, the inflow condition for the particle volume fraction is α = 0.05.
For time 20 < t < 35 we change the inflow condition by increasing the particle
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Figure 4.8: Geometry and mesh of the chute with a contraction.

volume fraction to α = 0.3 after which we decrease the particle volume fraction
again to α = 0.05. At the walls we follow Ambati and Bokhove [3] and impose:

vb · n̄ = −vL · n̄, vb · t̄ = vL · t̄,
ub · n̄ = −uL · n̄, ub · t̄ = uL · t̄,

(4.15)

where t̄ is the unit tangential vector orthogonal to the normal vector n̄. Further-
more, we extrapolate the void fraction, αR = αL and the flow height hR = hL.
At the outflow boundary, all variables are extrapolated, UR = UL.

There are a number of constants in the depth-averaged flow model. We
will consider shallow liquid-solid flows with a height to length ratio of ε = 0.2
as a feasible approximation and for which the liquid to solid density ratio is
ρ = 0.9. The gravity constant is g = 1.5 so that the gravity components are
g1 = sin(θ)g, g2 = 0 and g3 = cos(θ)g in which θ is the angle of the contraction
with respect to the horizontal (see also Figure 4.1). We take θ = 0.625◦ for
0 ≤ x ≤ 7 and θ = 10◦ for x > 7 so that the outflow boundary has no effect on
the solution in the contraction. To be able to calculate the drag function FD,
we use the following constants: ρf = 1000 kg m−3 and µf = 10−3 kg (ms)−1

while the solid particles are assumed to have a diameter of d = 10−3m and
vT = 0.143ms−1 [38]. The internal angle of friction is taken to be φint = 24.5◦

and the bed friction angle is φbed = 14.75◦ [7]. The bottom topography is taken
constant b(x, y) = 0 and the drag coefficient is CD = 10−4.

We compute the solution for the depth-averaged model using space DGFEM
until t = 100 using a CFL number of CFL = 0.8 on a grid with 400 elements in
the x-direction and 40 elements in the y-direction. In the slope limiter, a combi-
nation of Lagrange, Hermite and original polynomials was used with γ = 10 to
avoid severe over- and undershoots. In Figures 4.9- 4.11 we show the transition
of the flow height h from oblique jumps to an upstream steady shock (for a
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comparison, see also Figure 1.2). We see the same as observed by Akers and
Bokhove [2]. In Figures 4.9a, b and c we see that the first steady-state solution
is captured very well. After increasing the particle volume fraction at the inlet,
the steady-state is perturbed. The transitional phase in Figures 4.10a and b
show the numerical and laboratory results, respectively, and we see different be-
havior between the results. The second steady-state, an upstream steady shock,
however is captured again very well (see Figures 4.11a and b). We remark that
if CD = 0, we do not get an upstream steady shock. As expected, an upstream
moving shock appears.
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Figure 4.9: Oblique jump solution at t = 22.
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CHAPTER 5

h-Multigrid optimization for higher order
accurate space-time discontinuous Galerkin

discretizations

Space-time discontinuous Galerkin (DG) discretizations of partial differential equations

result in large systems of algebraic equations that need to be solved at each time-step.

To efficiently solve these algebraic equations, we combine a pseudo-time integration

method with new multigrid techniques. We remark that in this chapter we only

consider h-multigrid techniques so that with multigrid we mean h-multigrid. The

main benefits of this multigrid algorithm is that no large global linear system needs to

be solved and, through the use of explicit Runge-Kutta type smoothers, the locality of

the DG discretization is preserved. A two- and three-level Fourier analysis is used to

investigate and optimize the h-multigrid algorithm for second and third order accurate

space-time DG discretizations of the two-dimensional advection-diffusion equation.

We will compare our new optimized schemes with existing h-multigrid techniques

employing Runge-Kutta type smoothers.

5.1 Space-time DG for the 2D advection-diffusion
equation

In this section we summarize the space-time DG method for the 2D advection-
diffusion equation. We start by explaining the space-time formulation of the
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problem after which the space-time DG weak formulation is discussed. Intro-
ducing a polynomial approximation in the weak formulation then results in a
system of algebraic equations. Also, we summarize the pseudo-time integration
and explicit Runge-Kutta methods that we optimize later in Section 5.4.

5.1.1 Space-time DG formulation

In the space-time DG method, the space and time variables are treated together.
A point at time t = x0 with position vector x̄ = (x1, x2) has Cartesian coordi-
nates x = (x0, x̄) in the open domain E ⊂ R3. At time t, the flow domain Ω(t)
is defined as Ω(t) := {x̄ ∈ R2 : (t, x̄) ∈ E}. By taking t0 and T as the initial
and final time of the evolution of the space-time flow domain, the space-time
domain boundary ∂E consists of the hyper-surfaces Ω(t0) ≡ {x ∈ ∂E : x0 = t0},
Ω(T ) ≡ {x ∈ ∂E : x0 = T} and Q ≡ {x ∈ ∂E : t0 < x0 < T}. With this
notation, the 2D advection-diffusion equation can be written as:





u,0 + aku,k − Aksu,s,k = 0, k, s = 1, 2, on E ,

u = u0, on Ω(t0),

u = ub, on Q,

(5.1)

where a comma denotes differentiation with respect to the Cartesian coordinate
xk, ak ∈ R are the constant advection coefficients and Aks ∈ R+ the constant
diffusion coefficients. We take A11 = νx, A22 = νy and A12 = A21 = 0. The
initial flow field is denoted by u0 and the boundary data by ub. The summation
convention is used on repeated indices.

5.1.2 Weak formulation and discretization

The approximation Ωh(tn) of the flow domain Ω(tn) is divided into Nn non-
overlapping spatial elements Kj(tn). The space-time elements Kn

j are con-

structed by connecting Kn
j with Kn+1

j using linear or quadratic interpolation
in time. The flow domain E , limited to the time interval (tn, tn+1), defines a
space-time slab, En

h . The tessellation T n
h of En

h consists of all space-time elements
Kn

j .
Within a space-time slab we distinguish faces connecting space-time slabs,

Kj(t
+
n ) and Kj(t

−
n+1), internal faces Sn

I and boundary faces Sn
B . The outward

space-time normal vector on a space-time element Kn
j is denoted by n = (nt, n̄),

with nt the temporal and n̄ the spacial part of the outward normal vector.
On an internal face S ∈ SI , the traces from the left and right element are
denoted by (·)L and (·)R, respectively. The average operator is defined as {{·}} =
1
2 ((·)L + (·)R) and the jump operator as [[·]]k = (·)Ln̄L

k + (·)Rn̄R
k .
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We consider approximations of u(x) and test functions v(x) in the finite
element space Wh defined as:

Wh =
{
W ∈ L2(Eh) : W |K ◦ Gn

K ∈ P p(K̂), ∀K ∈ Th

}
,

where L2(Eh) is the space of square integrable functions on Eh, P p(K̂) the space
of polynomials of degree at most p on the reference element K̂ = (−1, 1)3 and Gn

K

the iso-parametric mapping from the master element to the space-time element
Kn

j . Furthermore, we also use the following space:

Vh =
{
V ∈ (L2(Eh))2 : V |K ◦ Gn

K ∈ (P p(K̂))2, ∀K ∈ Th

}
.

The space-time DG weak formulation of the 2D advection-diffusion equation
is: Find a u ∈ Wh such that for all v ∈ Wh:

−
∑

K∈T n
h

∫

K

(
v,0u + v,k(aku − Aks u,s))

)
dK +

∑

S∈Sn
I

∫

S

[[v]]kakû dS

+
∑

K∈T n
h

(∫

K(t−n+1)

vLuL dK −
∫

K(t+n )

vLuR dK

)
+

∑

S∈Sn
B

∫

S

vLakûn̄L
k dS

−
∑

S∈Sn
I

∫

S

[[v]]kAks{{u,s − ηSRS
s }} dS −

∑

S∈Sn
B

∫

S

vLAks(u
L
,s − ηSRS

s )n̄L
k dS

−
∑

S∈Sn
I

∫

S

Aks{{v,k}}[[u]]s dS −
∑

S∈Sn
B

∫

S

vL
,kAks(u

L − ub)n̄L
s dS = 0,

(5.2)

in which a space-time generalization of the approaches by Bassi and Rebay [10]
and Brezzi [13] were followed for the discretization of the viscous flux. The local
lifting operator is defined as [41]: Find an RS ∈ Vh such that for all w ∈ Vh:

∑

K∈T n
h

∫

K

wsRS
s dK =

{∫
S
{{ws}}[[u]]s dS for S ∈ Sn

I ,∫
S

wL
s (uL − ub)n̄L

s dS for S ∈ Sn
B .

The stabilization parameter ηS is constant and should be chosen greater or equal
to the number of space-faces of an element. An upwind flux is used for û in
(5.2). We refer to [69] for a full error analysis and derivation of the space-time
DG algorithm for the advection-diffusion equation.

The DG discretization is obtained by approximating the test and trial func-
tions in each element K ∈ T n

h with polynomial expansions:

u(t, x̄)|K = ûiψi(t, x̄), v(t, x̄)|K = v̂jψj(t, x̄), (5.3)
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with ψi the basis functions and ûi and v̂j expansion coefficients, respectively, for
i, j = 0, 1, 2, ..., N, where N depends on the polynomial degree of the basis func-
tions in Wh. On the reference element K̂, the basis functions ψ̂i(ξ) ∈ P p(K̂) are
a combination of one-dimensional Legendre polynomials. These are related to
ψi(x) in the space-time element K through the mapping Gn

K: ψi = ψ̂i ◦ (Gn
K)−1.

In this chapter we consider linear and quadratic polynomial approximations.
For the multigrid optimization in Section 5.4, we consider a uniform space-

time mesh with elements ∆t×∆x×∆y and we consider (5.2) only with periodic
boundary conditions. We will use the following dimensionless numbers:

CFL =
a∆t

h
, Rex =

a(∆x)2

νxh
, Rey =

a(∆y)2

νyh
, AR =

∆y

∆x
,

in which h = ∆x
√

1 + AR2 and a =
√

a2
x + a2

y. Furthermore, we introduce

the flow angle γflow with respect to the x-axis so that ax = cos(γflow)a and
ay = sin(γflow)a.

Then, replacing u and v in (5.2) with their expansions (5.3) and using the
fact that the coefficients v̂ are arbitrary, we obtain the following discrete system
for the vector of expansion coefficients ûn at time level n:

Lh(ûn; ûn−1) := ∆x∆y
(
(La

x + La
y + Ld

x + Ld
y + Lt)ûn + Lt−1ûn−1

)
= 0. (5.4)

The space-time DG discretization can be represented using the following dimen-
sionless stencil notation:

L̄a
x =




0
La

x Da
x 0

0


 , L̄a

y =




0
0 Da

y 0
La

y


 , L̄t =




0
0 Dt 0

0


 ,

L̄d
x =




0
Ld

x Dd
x Ud

x

0


 , L̄d

y =




Ud
y

0 Dd
y 0

Ld
y


 , L̄t−1 =




0
0 Dt−1 0

0


 ,

(5.5)

in which the blocks La,d
x,y, Da,d

x,y, Ud
x,y, Dt,t−1 ∈ Rm×m and m depends on the

order of the space-time DG discretization. Note, we assume here that the ad-
vection coefficients ak are all positive. If they are (partly) negative the upwind
stencil in La

x and/or La
y must be changed accordingly.

The inviscid part of the stencil in (5.4) depends on the CFL number and can
now be written as:

La
x = CFL cos(γflow)

√
1 + AR2L̄a

x = Γa
xL̄a

x,

La
y = CFL sin(γflow)

√
1 + AR2

AR
L̄a

y = Γa
yL̄a

y.
(5.6)
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The viscous part of the stencil depends on the Reynolds and CFL numbers:

Ld
x =

CFL

Rex
L̄d

x = Γd
xL̄d

x, Ld
y =

CFL

Rey
L̄d

y = Γd
yL̄d

y, (5.7)

while the stencils related to the time discretization are given by:

Lt = L̄t, Lt−1 = L̄t−1. (5.8)

5.1.3 Pseudo-time integration and Runge-Kutta methods

The space-time discretization (5.4) is solved using a multigrid algorithm with a
Runge-Kutta type smoother. For notational purposes let the system of algebraic
equations be denoted as

Lh(ûn; ûn−1) = 0. (5.9)

Following van der Vegt and van der Ven [79], to solve the system of coupled
equations for the expansion coefficients (5.9), a pseudo time derivative is added
to the system:

M∂û∗

∂τ
= −Lh(û∗; ûn−1), (5.10)

which is integrated to steady-state in pseudo-time. At steady state, ûn = û∗.
Here M is the mass matrix defined as Mij =

∫
K

ψiψj dK, with ψi the basis
functions used in the DG discretization.

For the pseudo-time integration we introduce the dimensionless number λ =
∆τ/∆t and use the pseudo-time CFL number, defined as CFLτ = λCFL and
the pseudo-time Von Neumann number VNτ = min(CFLτ/Rex, CFLτ/Rey).
We rewrite (5.10) by setting Lh = ∆x∆yL̄h and M = ∆x∆y∆tM̄:

∆tM̄∂û∗

∂τ
= −L̄h(û∗; ûn−1), (5.11)

in which M̄ is the dimensionless mass-matrix. To solve (5.11) we consider 5-
stage Runge-Kutta methods. For notational purposes, we set L̄h(V ∗;un−1) =
L̄h(V ∗). Initialize V̂ 0 = ûn−1. Then, an N -stage Runge-Kutta scheme is given
by:

V̂ j =

(
V̂ 0−λ

( j∑

l=1

αj+1,lM̄−1L̄h(V̂ l−1)

)
+λβj V̂

j−1

)
/(1+βjλI), j = 1, ..., N.

(5.12)
Return then ûn = V̂ N . For notational purposes we also write:

ûn = Shûn−1. (5.13)
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We require from the 5-stage Runge-Kutta schemes that they are second order
accurate in pseudo-time. This requirement gives conditions for the α coeffi-
cients [29]. For the β coefficients, which serve as a Melson correction to improve
stability for small values of λ ∼= 1, see Melson et al. [55], no additional conditions
are imposed.

5.2 h-Multigrid algorithms for linear systems

In this section we will first discuss the algebraic formulation of multigrid tech-
niques for linear systems. Next, we discuss the multigrid error transformation
operators. These operators will be analyzed using Fourier analysis in Section 5.3.
For more information on multigrid methods, we refer to Hackbusch [27], Trot-
tenberg et al. [77] and Wesseling [84].

5.2.1 Algebraic formulation of multigrid algorithms for
linear systems

In a multigrid technique for the solution of linear partial differential equa-
tions, we introduce a finite sequence Nc of increasingly coarser meshes Gnh,
n ∈ {1, ..., Nc} to generate coarser approximations of the original problem. For
1 ≤ n < m ≤ Nc, restriction operators Rmh

nh : Gnh → Gmh and prolongation
operators Pnh

mh : Gmh → Gnh are introduced to transfer the data between the
different meshes. Following [42], we define the prolongation operator Pnh

mh for
the space-time DG discretization as:

ûnh
i = (M−1

nh)il

(∫

Knh

ψnh
l ψmh

j dK
)

ûmh
j

= Pnh
mhûmh

j , 1 ≤ n < m ≤ Nc,

(5.14)

where Mnh is the mass matrix of element Knh. This definition stems from
the L2-projection of the coarse grid solution Umh in an element Kmh on the
corresponding set of fine grid elements {Knh}. The restriction operator is de-
fined as Rmh

nh = 1
4 (Pnh

mh)T . In (5.14), the embedding of spaces is assumed, i.e.
Wmh ⊂ Wnh for n < m, to ensure that umh is defined in Knh.

In a multigrid technique to solve Lhvh = fh on Gh, with Lh a linear dis-
cretization operator and fh a given righthand side, a set of auxiliary problems
is solved. At each grid level Gnh, 1 ≤ n ≤ Nc, we solve Lnhvnh = fnh using an
iterative method Snh starting from an initial guess w0

nh. We assume that each
operator Lnh is invertible. The multigrid algorithm is defined as follows:
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Definition 5.2.1. MGn-Algorithm.
if n = Nc, the coarsest mesh, then

w1
nh = MGn(w0

nh, fnh, ν1, ν2) := L−1
nhfnh, (5.15)

else the multigrid algorithm MGn is defined as

1. (Pre-smoothing). Let u0
nh = w0

nh and define uν1

nh by

ul+1
nh = Snhul

nh, l = 0, 1, · · · , ν1 − 1;

with Snh the smoothing operator at grid level n given by (5.13).

2. (Restricting). Restrict the residual to the coarser mesh Gmh with n <
m ≤ Nc,

rmh = Rmh
nh (fnh − Lnhuν1

nh).

3. (Coarse-grid solving). At grid level m set z0
mh = 0 and repeat the MGm-

algorithm γ-times

zl
mh = MGm(zl−1

mh , rmh, ν1, ν2), l = 1, · · · , γ.

4. (Correcting). Let y0
nh = uν1

nh + Pnh
mhzγ

mh.

5. (Post-smoothing). Define yν2 by

yl+1
nh = Snhyl

nh, l = 0, 1, · · · , ν2 − 1.

Finally, set w1
nh = MGn(w0

nh, fnh, ν1, ν2) := yµ2

nh as the result of the MGn-
algorithm.

Using different sequences of meshes Gnh various multigrid cycles, such as the
V, W or F-cycle can be constructed.

5.2.2 Multigrid error transformation operator

In order to understand the performance of the multigrid algorithm we need the
multigrid error transformation operator. Define the error of the initial guess
w0

nh in the multigrid algorithm at grid level n as e0
nh = w0

nh − vnh, with vnh

the exact solution and the error of the approximation w1
nh after application of

MGn(w0
nh, fnh, ν1, ν2) as e1

nh = w1
nh − vnh. The initial and approximation error

are related through the multigrid error transformation operator e1
nh = Mnhe0

nh.
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Definition 5.2.2. The multigrid error transformation operator Mnh at grid
level n is defined recursively, with m > n, as:

Mnh = Sν2

nh(Inh − Pnh
mh(Imh − Mγ

mh)L−1
mhRmh

nh Lnh)Sν1

nh,

with Inh the identity operator, νl, l = 1, 2, the number of pre- and post-
smoothing iterations and γ is the cycle index.

For a derivation, see e.g. [77, 78]. We are specifically interested in two- and
three-level multigrid. For two grid levels (n = 1,m = 2) the multigrid error
transformation operator is equal to

M2g
h = Sν2

h (Ih − Ph
2hL−1

2h R2h
h Lh)Sν1

h , (5.16)

and for three grid levels (n = 1,m = 2) and (n = 2,m = 4) we obtain

M3g
h = Sν2

h (Ih − Ph
2h(I2h − Mγ

2h)L−1
2h R2h

h Lh)Sν1

h (5.17)

with
M2h = Sν4

2h(I2h − P 2h
4h L−1

4h R4h
2hL2h)Sν3

2h. (5.18)

We will also investigate the effect of replacing the exact solution on the coarsest
mesh in (5.15) with νC smoothing steps. This approach is more straightforward
for non-linear problems, such as the compressible Navier-Stokes equations.

5.3 Fourier analysis of discrete operators

To analyze the two- and three-level multigrid error transformation operators,
(5.16) and (5.17)-(5.18), respectively, we will use discrete Fourier analysis. The
analysis closely follows Brandt [12] and Wienands and Joppich [85]. See also
Hackbusch [27], Hackbusch and Trottenberg [28], Trottenberg et al. [77], Wes-
seling [84], and van der Vegt and Rhebergen [78].

5.3.1 Introduction

Assume a finite mesh GN
h , which is defined in R2 as

GN
h :=

{
(x1, x2) = (k1h1, k2h2) | k ∈ GN

k , h ∈
(
R+

)2}
,

where we use the index set GN
k given by

GN
k :=

{
k ∈ Z2 | − Ni ≤ ki ≤ Ni − 1, Ni ∈ N, i = 1, 2

}
.

We also consider an infinite mesh Gh, which is defined in R2 as

Gh :=
{
(x1, x2) = (k1h1, k2h2) | k ∈ Z2, h ∈

(
R+

)2}
.
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On Gh we define for vh, wh : Gnh → C the scaled Euclidian inner product as

(vh, wh)Gh
:= lim

N→∞

1

4N2

∑

x∈GN
h

vh(x)wh(x). (5.19)

Here an over-bar denotes the complex conjugate and x = (x1, x2). In the analy-
sis we will also need the discrete ℓ2 inner product and norm on Gh, which are de-
fined for vh, wh : Gh → C, respectively, as (vh, wh)ℓ2(Gh) :=

∑
x∈Gh

vh(x)wh(x)

and ‖vh‖ℓ2(Gh) := (vh, vh)
1
2

ℓ2(Gh).

In the multigrid algorithm on each of the meshes Gnh, n ∈ {1, · · · , Nc},
we solve the linear system Lnhvnh(x) = fnh(x), x ∈ Gnh, with Lnh the matrix
resulting from a numerical discretization on the mesh Gnh of a (system of) linear
partial differential equations with constant coefficients and fnh the right hand
side. The linear system on the mesh Gnh is described using stencil notation

Lnhvnh(x) =
∑

k∈Jn

ln,kvnh(x + kh), x ∈ Gnh, (5.20)

with stencil coefficients ln,k ∈ Rmk×mk and finite index sets Jn ⊂ Z2 describing
the stencil. In a space-time DG discretization, the 5-point stencil is given by:

Jn := {k = (k1, k2) | k1, k2 ∈ {−1, 0, 1}}, and [L]n =




0 l0,1 0
l−1,0 l0,0 l1,0

0 l0,−1 0




n

,

in which the stencil coefficients ln,k are generally mk ×mk matrices, with mk ≥
1 depending on the order of the discretization. For the advection-diffusion
equation, it follows from (5.4)-(5.8):

l0,1 = Γd
yUd

y , l−1,0 =
(
Γa

xLa
x + Γd

xLd
x

)
,

l0,0 =
(
Γa

xDa
x + Γa

yDa
y + Γd

xDd
x + Γd

yDd
y + Dt

)
,

l1,0 = Γd
xUd

x , l0,−1 =
(
Γa

yLa
y + Γd

yLd
y

)
.

On the infinite mesh Gh, we define for x ∈ Gh the continuous Fourier modes
with frequency θ = (θ1, θ2) ∈ R2 as φh(θ, x) := eiθ·x/h with θ ·x/h := θ1x1/h1 +
θ2x2/h2, h ∈ (R+)2 and i =

√
−1. We also define the space of bounded infinite

grid functions by F(Gh) := {vh | vh : Gh → C with ‖vh‖Gh
< ∞}. For each vh ∈

F(Gh) there exists a Fourier transformation, hence vh(x) can be written as a
linear combination of Fourier components

vh(x) =

∫

|θ|≤π

v̂h(θ)eiθ·x/hdθ, x ∈ Gh, (5.21)
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with x/h := (x1/h1, x2/h2) = j ∈ Z2, and inverse transformation

v̂h(θ) =
1

4π2

∑

x∈Gh

vh(x)e−iθ·x/h, −π ≤ θj < π,

see e.g. [12]. Due to aliasing, Fourier components with |θ̂| := max{|θ1|, |θ2|} ≥ π

are not visible on Gh. These modes coincide with eiθ·x/h, where θ = θ̂ (mod 2π).
Hence, the Fourier space

F := span
{

eiθ·x/h | θ ∈ Θ = [−π, π)2, x ∈ Gh

}
(5.22)

contains any bounded infinite grid function.

5.3.2 Fourier symbols of grid operators

In this section we will summarize the Fourier symbols of the basic multigrid
operators, namely the fine and coarse grid operators, and the restriction, pro-
longation and smoothing operator. We will consider the Fourier symbols for
the frequencies θα, with α ∈ α2 :=

{
α = (ᾱ1, ᾱ2) | ᾱi ∈

{
0, 1

}
, i = 1, 2

}
. These

modes are defined as

θ = θ0 ∈ Θ2h := [−π/2, π/2)2

θα := θ0 − (ᾱ1sign(θ1), ᾱ2 sign(θ2))π,

see Figure 5.1.

Fine grid and smoothing operator

Define the fine grid operator as

(Lhvh)(x) =
∑

k∈JLh

lkvh(x + kh), x ∈ Gh,

with JLh
the stencil of the fine grid operator. The fine grid operator is related

to its discrete Fourier transform L̂hvh(θ) through the relation (see (5.21))

(Lhvh)(x) =

∫

|θ|≤π

L̂hvh(θ)eiθ·x/hdθ. (5.23)

The discrete Fourier transform can be further evaluated into:

L̂hvh(θ) = L̂h(θ)v̂h(θ), with L̂h(θ) =
∑

k∈JLh

lkeiθ·k. (5.24)
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Figure 5.1: Low and high frequencies Fourier modes in two-level multigrid.

Similarly, we obtain for the smoothing operator Sh, which is defined as

(Shvh)(x) =
∑

k∈JSh

skvh(x + kh), x ∈ Gh,

with JSh
the stencil of the smoothing operator, the relation

(Shvh)(x) =

∫

|θ|≤π

Ŝhvh(θ)eiθ·x/hdθ (5.25)

where the discrete Fourier transform can be further evaluated into:

Ŝhvh(θ) = Ŝh(θ)v̂h(θ), with Ŝh(θ) =
∑

k∈JSh

skeiθ·k. (5.26)

Restriction operator

Define the restriction operator as

(R2h
h vh)(x̄) =

∑

k∈JR

rkvh(x̄ + kh), x̄ ∈ G2h, x̄ + kh ∈ Gh,
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with JR the stencil of the restriction operator. The restriction operator is related

to its discrete Fourier transform R̂2h
h vh(2θ0) through the relation

(R2h
h vh)(x̄) =

∫

|θ0|≤π
2

R̂2h
h vh(2θ0)ei2θ0·x̄/(2h)dθ0. (5.27)

The discrete Fourier transform R̂2h
h vh(2θ0) can be further evaluated into:

R̂2h
h vh(2θ0) =

∑

α∈α2

R̂2h
h (θα)v̂h(θα), with R̂2h

h (θ) =
∑

k∈JR

rkeiθ·k, (5.28)

which shows that the restriction operator couples the fine grid modes θα into a
coarse grid mode θ0.

Coarse grid operator

Define the coarse grid operator for x̄ ∈ G2h as

(L2hv2h)(x̄) =
∑

k∈JL2h

lkv2h(x̄ + 2kh), x̄ ∈ G2h, x̄ + 2kh ∈ G2h

with JL2h
the stencil of the coarse grid operator. The coarse grid operator is

related to its discrete Fourier transform L̂2hv2h(θ0) through the relation

(L2hv2h)(x̄) =

∫

|θ0|≤π
2

L̂2hv2h(θ0)ei2θ0·x̄/(2h)dθ0. (5.29)

The discrete Fourier transform can be further evaluated into:

L̂2hv2h(2θ0) = L̂2h(2θ0)v̂2h(2θ0), with L̂2h(2θ0) =
∑

k∈JL2h

lke2iθ0·k, (5.30)

where θ0 ∈ Θ2h. Analogously, we obtain for L4h the symbol

L̂4h(4θ0) =
∑

k∈JL4h

lke4iθ0·k.

Prolongation operator

The definition of the prolongation operator requires the introduction of subsets
of the mesh Gh. Define the meshes Gα

h as

Gα
h := {x = kh | k ∈ Z2, k = α (mod 2)}.



5.3 Fourier analysis of discrete operators 93

On each mesh Gα
h a separate index set Jα

P is defined as

Jα
P := {α = (ᾱ1, ᾱ2) | ᾱi ∈ {0, 1}, i = 1, 2}

with JP = ∪α∈αd
Jα

P . The prolongation operator on the meshes Gα
h then is equal

to
(Ph

2hv2h)(x) =
∑

k∈Jα
P

pkv2h(x + kh), x ∈ Gα
h , x + kh ∈ G2h.

In two dimensions we obtain the meshes

G00
h = {(x1, x2) = (k1h1, k2h2) | k1 even, k2 even}

G11
h = {(x1, x2) = (k1h1, k2h2) | k1 odd, k2 odd}

G10
h = {(x1, x2) = (k1h1, k2h2) | k1 odd, k2 even}

G01
h = {(x1, x2) = (k1h1, k2h2) | k1 even, k2 odd},

with hi ∈ R+, and the sets Jα
P which are equal to

J00 = {k ∈ JP | k1 even, k2 even}, J11 = {k ∈ JP | k1 odd, k2 odd},
J10 = {k ∈ JP | k1 odd, k2 even}, J01 = {k ∈ JP | k1 even, k2 odd}.

The prolongation operator is related to its discrete Fourier transform through
the relation

(
Ph

2hv2h

)
(x) =

∑

α∈αd

∫

|θ0|≤π
2

P̂h
2hv2h(θα)eiθα·x/hdθ0. (5.31)

The discrete Fourier transform can be further evaluated into

P̂h
2hv2h(θα) = P̂h

2h(θα)v̂2h(2θ0) (5.32)

with the Fourier symbol P̂h
2h(θα) defined as

P̂h
2h(θα) =

∑

β∈αd

∑

k∈Jβ
P

pkeiθα·k.

5.3.3 Two-grid Fourier analysis

For the two-grid Fourier analysis we define the 2h-Fourier harmonics F2h(θ) as

F2h(θ) := span
{
φh(θα, x) with α ∈ α2

}
.

The introduction of 2h-Fourier harmonics is motivated by the fact that each low
frequency θ0 ∈ Θ2h is coupled to the high frequency modes θα with α ∈ α2\{0}.
These modes are not visible on the coarse mesh G2h due to aliasing.
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The Fourier symbols L̂h(θ) and L̂2h(2θ) can be zero for certain values of θ.
These frequencies are removed from the space of 2h-Fourier harmonics through
the definition of

F2g := F2h\ ∪θ∈Ψ2g
F2h(θ)

with
Ψ2g :=

{
θ ∈ Θ2h | L̂2h(2θ0) = 0 or L̂h(θα) = 0

}
.

The error eD
h after one iteration of a two-grid multigrid cycle is determined

by eD
h = M2g

h eA
h , with eA

h the initial error and M2g
h the two level multigrid

error transformation operator defined by (5.16). The error eD
h has the Fourier

decomposition for x ∈ Gh

eD
h (x) =

∫

|θ|≤π

êD
h (θ)eiθ·x/hdθ

=
∑

α∈α2

∫

|θ0|≤π/2

̂(
M2g

h eA
h

)
(θα)eiθα·x/hdθ0. (5.33)

Using the Fourier symbols discussed in Section 5.3.2, the discrete Fourier trans-

form of ̂M2g
h eA

h (θα) can be further evaluated into

̂M2g
h eA

h (θα) =
(
Ŝh(θα)

)ν1+ν2
êA
h (θα)−

(
Ŝh(θα)

)ν2
P̂h

2h(θα)L̂−1
2h (2θ0)

∑

β∈α2

R̂2h
h (θβ)L̂h(θβ)

(
Ŝh(θβ)

)ν1
êA
h (θβ).

(5.34)

In order to simplify notation the following matrices are defined for 2D problems

L̂2g
h (θ) = diag (L̂h(θ00), L̂h(θ11), L̂h(θ10), L̂h(θ01)) ∈ C4m×4m (5.35)

Ŝ2g
h (θ) = diag (Ŝh(θ00), Ŝh(θ11), Ŝh(θ10), Ŝh(θ01)) ∈ C4m×4m (5.36)

R̂2g
h (θ) = (R̂2h

h (θ00), R̂2h
h (θ11), R̂2h

h (θ10), R̂2h
h (θ01)) ∈ Cm×4m (5.37)

P̂ 2g
h (θ) = (P̂h

2h(θ00), P̂h
2h(θ11), P̂h

2h(θ10), P̂h
2h(θ01)T ) ∈ C4m×m (5.38)

where diag refers to a diagonal matrix consisting of m × m blocks with m ≥ 1.
The discrete Fourier transform of the two-level multigrid error transformation
operator M̂2g

h ∈ C4m×4m then is equal to

M̂2g
h (θ) =

(
Ŝ2g

h (θ)
)ν2

(
I2g − P̂ 2g

h (θ)L̂−1
2h (2θ0)R̂2g

h (θ)L̂2g
h (θ)

)(
Ŝ2g

h (θ)
)ν1

, (5.39)

with θ ∈ Θ2h \ Ψ2g and I2g the 4m × 4m identity matrix.
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Figure 5.2: Low, medium and high frequencies Fourier modes in three-level
multigrid.

5.3.4 Three-grid Fourier analysis

For the three-grid Fourier analysis we define the Fourier harmonics F4h(θ) as

F4h(θ) := span
{
φh(θα

β , x) | α ∈ α2, β ∈ β2

}
, where

θ = θ0
0 ∈ Θ4h := [−π/4, π/4)2,

θβ = θ0
0 − (β̄1 sign (θ1), β̄2 sign (θ2))π,

θα
β := θβ − (ᾱ1sign ((θ1)β), ᾱ2 sign ((θ2)β))π,

β2 := {β = (β̄1, β̄2) | β̄i ∈ {0, 1
2}, i = 1, 2}, (5.40)

see Figure 5.2. Note that we now have 16 coupled Fourier harmonics all related
to θ00

00. In the transition from G2h to G4h the modes θβ = θ0
β are not visible due

to aliasing. Hence for ¯̄x ∈ G4h we have

φh(θ00
00, ¯̄x) = φh(θ00

1
2

1
2
, ¯̄x) = φh(θ00

1
20, ¯̄x) = φh(θ00

0 1
2
, ¯̄x),

and all modes θα
β on G4h alias to θ00

00 resulting in the relation

φ2h(2θ00
00, ¯̄x) = φ4h(4θ00

00, ¯̄x) = φ4h(4θα
β , ¯̄x) with ¯̄x ∈ G4h, θ00

00 ∈ Θ4h.
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The Fourier symbols L̂h(θ), L̂2h(2θ) and L̂4h(4θ) can be zero for certain values of
θ. These frequencies are removed from the space of Fourier harmonics through
the definition of

F3g := F4h\ ∪θ∈Ψ3g
F4h(θ),

with

Ψ3g :=
{
θ ∈ Θ4h | L̂4h(4θ0

0) = 0 or L̂2h(2θ0
β) = 0 or L̂h(θα

β ) = 0
}
.

The error eD
h after one iteration of a three-grid multigrid cycle is determined by

eD
h = M3g

h eA
h , with eA

h the initial error and M3g
h the three-level multigrid error

transformation operator defined by (5.17).

In order to compute the discrete Fourier transform of M3g
h we need some

intermediate results. First, all modes φh(θα
β , x) on Gh alias to φ2h(2θ0

β , x̄) on
the mesh G2h. In order to compute the effect of the coarse grid correction
operator M2h we use (5.34), replace θα with 2θ0

β , and h with 2h. The discrete

Fourier transform of ̂M2g
2heA

2h(θα) is thus equal to

̂M2g
2heA

2h(2θ0
β) =

(
Ŝ2h(2θ0

β)
)ν3+ν4

êA
2h(2θ0

β) −
(
Ŝ2h(2θ0

β)
)ν4

P̂ 2h
4h (2θ0

β)L̂−1
4h (4θ0

0)×∑

β1∈α2

R̂4h
2h(2θ0

β1
)L̂2h(2θ0

β1
)
(
Ŝ2h(2θ0

β1
)
)ν3

êA
2h(2θ0

β1
).

(5.41)

Introduce the coarse grid correction matrix as M̃2h = I2h − Mγc

2h . Using (5.41)
we obtain the relation

̂̃
M2heA

2h(2θ0
β) =

∑

β̃2∈β2

̂̃
M(β, β̃2; γc)êA

2h(2θ0
β̃2

) (5.42)

where the coefficients
̂̃
M(β, β̃2; γc) are independent of êA

2h(2θ0
β).

The error eD
h has for x ∈ Gh the Fourier decomposition

eD
h (x) =

∫

|θ|≤π

êD
h (θ)eiθ·x/hdθ

=
∑

β∈β2

∑

γ∈α2

∫

|θ0|≤π/4

̂(
M3g

h eA
h

)
(θγ

β)eiθγ

β
·x/hdθ0

0. (5.43)
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The discrete Fourier transform of ̂M3g
h eA

h (θγ
β) can be further evaluated into

̂M3g
h eA

h (θγ
β) =

(
Ŝh(θγ

β)
)ν1+ν2

êA(θγ
β) −

(
Ŝh(θγ

β)
)ν2

P̂h
2h(θγ

β)×
∑

β̃2∈β2

̂̃
M(β, β̃2; γc)L̂

−1
2h (2θ0

β̃2
)

∑

α∈α2

R̂2h
h (θα

β̃2
)L̂h(θα

β̃2
)
(
Ŝh(θα

β̃2
)
)ν1

êA(θα
β̃2

).

In order to simplify notation the following matrices are defined

L̂2g
h (θβ) = diag (L̂h(θ00

β ), L̂h(θ11
β ), L̂h(θ10

β ), L̂h(θ01
β )) ∈ C4m×4m (5.44)

Ŝ2g
h (θβ) = diag (Ŝh(θ00

β ), Ŝh(θ11
β ), Ŝh(θ10

β ), Ŝh(θ01
β )) ∈ C4m×4m (5.45)

R̂2g
h (θβ) = (R̂2h

h (θ00
β ), R̂2h

h (θ11
β ), R̂2h

h (θ10
β ), R̂2h

h (θ01
β )) ∈ Cm×4m (5.46)

P̂ 2g
h (θβ) = (P̂h

2h(θ00
β ), P̂h

2h(θ11
β ), P̂h

2h(θ10
β ), P̂h

2h(θ01
β ))T ∈ C4m×m (5.47)

where diag refers to a diagonal matrix consisting of m × m blocks with m ∈ N.
We also introduce the matrices

L̂3g
h (θ) = bdiag

(
L̂2g

h (θ00), L̂
2g
h (θ 1

2
1
2
), L̂2g

h (θ 1
20), L̂

2g
h (θ0 1

2
)
)
∈ C16m×16m

Ŝ3g
h (θ) = bdiag

(
Ŝ2g

h (θ00), Ŝ
2g
h (θ 1

2
1
2
), Ŝ2g

h (θ 1
2 0), Ŝ

2g
h (θ0 1

2
)
)
∈ C16m×16m

R̂3g
h (θ) = bdiag

(
R̂2g

h (θ00), R̂
2g
h (θ 1

2
1
2
), R̂2g

h (θ 1
20), R̂

2g
h (θ0 1

2
)
)
∈ C4m×16m

P̂ 3g
h (θ) = bdiag

(
P̂ 2g

h (θ00), P̂
2g
h (θ 1

2
1
2
), P̂ 2g

h (θ 1
2 0), P̂

2g
h (θ0 1

2
)
)
∈ C16m×4m

Q̂3g
h (θ) = bdiag

(
L̂−1

2h (2θ00), L̂
−1
2h (2θ 1

2
1
2
), L̂−1

2h (2θ 1
20), L̂

−1
2h (2θ0 1

2
)
)
∈ C4m×4m

Û3g(θ; γc) =
̂̃
M(θ; γc) ∈ C4m×4m.

The discrete Fourier transform of the error transformation operator for a three-
level multigrid cycle M̂3g

h (θ) ∈ C16m×16m then is equal to

M̂3g
h (θ) =

(
Ŝ3g

h (θ)
)ν2

(
I3g − P̂ 3g

h (θ)Û3g(θ; γc)Q̂
3g
h (θ)R̂3g

h (θ)L̂3g
h (θ)

)(
Ŝ3g

h (θ)
)ν1

(5.48)
with θ ∈ Θ4h \Ψ3g and where I3g the 16m×16m identity matrix. We still need

to obtain an explicit expression for Û3g(θ; γc). On the mesh G2h the modes θα
β

reduce after the restriction operator to modes 2θ0
β , hence using the result of the

two-level analysis given by (5.39), the coarse grid error transformation operator
is equal to

M̂2g
2h(2θβ) =

(
Ŝ2g

2h(2θβ)
)ν4

(
I2g−P̂ 2g

2h (2θβ)L̂−1
4h (4θ0

0)R̂
2g
2h(2θβ)L̂2g

2h(2θβ)
)(

Ŝ2g
2h(2θβ)

)ν3
,

(5.49)
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with 2θβ ∈ Θ2h \ Ψ2g, I2g the 4m × 4m identity matrix and L̂2g
2h, Ŝ2g

2h, R̂2g
2h and

P̂ 2g
2h given by (5.44)-(5.47), respectively, with h replaced by 2h. The matrix

Û3g(θ; γc) then is equal to

Û3g(θ; γc) = I2g −
(
M̂2g

2h(2θβ)
)γc

.

5.3.5 Spectral radius

The spectral radius of the error transformation operator gives a prediction of
the asymptotic rate of convergence of the multigrid method. The asymptotic
convergence factor per cycle is defined as

µ = lim
m→∞


 sup

e
(0)
h

6=0

‖e(m)
h ‖ℓ2(Gh)

‖e(0)
h ‖ℓ2(Gh)




1
m

where e
(m)
h is the error after m applications of the multigrid cycle, hence e

(0)
h =

eA
h and e

(1)
h = eD

h . It can be shown that the asymptotic convergence factor is
equal to

µ = sup
θ∈Θng\Ψng

ρ
(
M̂ng(θ)

)
,

where ρ is the spectral radius defined as:

ρ(M) = max{|λ| |λ ∈ σ(M)}, where σ(M) = {λ ∈ C|λ is an eigenvalue of M}.

Note that a requirement for convergence is that the spectral radius has to satisfy
µ < 1. We will optimize our multigrid algorithm by minimizing the spectral
radius of the three-level multigrid error transformation operator (5.48).

5.4 Optimizing multigrid

In this section we will discuss the optimization of the Runge-Kutta smoothers.
We will consider 5-stage smoothers discussed in Section 5.1.3, distinguishing
between RK schemes with only non-zero diagonal terms versus Runge-Kutta
smoothers with all coefficients in (5.12) non-zero. For notational purposes, a
diagonal 5-stage RK scheme is denoted dRK5, while a full 5-stage RK is denoted
as fRK5. We will optimize the coefficients of the smoothers for three-level
multigrid computations for a space-time DG discretization of the advection-
diffusion equation in two-space dimensions using linear and quadratic basis-
functions for steady flows.
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To optimize our multigrid algorithm we will search for coefficients in the
Runge-Kutta smoothers (5.12) for which the spectral radius of the three-level
multigrid error transformation operator (5.48) is minimal. For the optimiza-
tion, we use the procedures fminsearch and fmincon, available in Matlab. As
constraint in the fmincon procedure, we require that the spectral radius of the
smoother and the three-level multigrid error transformation operator are less
than 1. The optimization will be performed for advection dominated flows in
which we fix the Reynolds numbers Rex = Rey = 100. We also fix the flow angle
γflow = π/4 the aspect ratio AR = 1 and CFL∆t = 100 for steady flows. For the
different optimized smoothers, the optimized coefficients are given in Tables 5.1
and 5.2. In Figures 5.3-5.6 we plot the stability domain and eigenvalue spectra
of the discretization, smoother and three-level algorithm for the new dRK5 and
fRK5 smoothers. We remark that the optimization is performed by approximat-
ing the exact solution on the coarsest grid by performing νC iterations of the
smoother. If, however, we perform the optimization by using the exact solution
on the coarsest grid instead, the Runge-Kutta coefficients may be different, but
the spectral radius of the multigrid algorithm will be approximately the same.

The optimization results in Tables 5.1 and 5.2 show that by optimizing
the Runge-Kutta smoothers a significant reduction in the spectral radius of
the multigrid error transformation matrix ρMG can be obtained. This should
result in a significantly improved convergence rate of the multigrid scheme,
but needs to be verified on actual computations since only periodic boundary
conditions are taken into account in the Fourier analysis. See Section 5.6 on the
performance of the multigrid algorithms.

The optimization process has a big impact on the Runge-Kutta coefficients
which greatly differ per case. Also, the Runge-Kutta coefficients are very differ-
ent from commonly used schemes since they are optimized for a fast multigrid
convergence and not for time accuracy. It really pays off to optimize close to a
realistic flow state, but of course this has its own limitations. Finding a good
balance between optimization and more generally applicable algorithms is still
an open question. In practice, the Runge-Kutta smoothers use local time step-
ping and this gives the opportunity to apply locally the best smoother for the
actual flow state.

5.5 Rescaling

On grids with high aspect ratios, a strong coupling in one direction versus a weak
coupling in the other directions are a cause for slow convergence of the multigrid
method [77]. This can also be seen in the scaling of the different operators of
the discretization. If AR is large, the scaling of La

x and Ld
x in (5.6) and (5.7)

becomes large so that the discretization terms in the x-direction are dominant.
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Steady flows, linear basis functions, 3-level multigrid

dRK5 fRK5

initial optimized initial optimized

α21 0.0791451 0.05768995298 0.05768995298 0.0578331573
α31 - - 0.0 -0.0002051554736
α32 0.163551 0.1405960888 0.1405960888 0.1403808301
α41 - - 0.0 0.0003953470071
α42 - - 0.0 -0.001195029164
α43 0.283663 0.267958213 0.267958213 0.2681810517
α51 - - 0.0 0.0001441249202
α52 - - 0.0 -0.0002608610327
α53 - - 0.0 -0.0003368070181
α54 0.5 0.5 0.5 0.8473374098
α61 - - 0.0 0.4115573097
α62 - - 0.0 -0.003144851878
α63 - - 0.0 -0.0001096455683
α64 - - 0.0 0.001555741114
α65 1.0 1.0 1.0 0.5901414466
β1 0.0791451 0.05768995298 0.05768995298 0.04887040625
β2 0.163551 0.1405960888 0.1405960888 0.1274785795
β3 0.283663 0.267958213 0.267958213 0.2287556298
β4 0.5 0.5 0.5 0.9547064029
β5 1.0 1.0 1.0 2.52621971

CFLτ 0.8 0.8 0.8 0.8
VNτ 0.8 0.8 0.8 0.8

ρS 5.943 0.98812 0.98812 0.98914

ρMG 167.06 0.89151 0.89151 0.81762

Table 5.1: Initial and optimized coefficients for the dRK5 and fRK5 smoothers
for 3-level multigrid for steady flows with CFL∆t = 100 and Rex = Rey = 100.
The flow angle is γflow = π/4 and the element aspect-ratio AR = 1. Here,
ν1 = ν2 = ν3 = ν4 = 1, νC = 4 and γ = 1.
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Steady flows, quadratic basis functions, 3-level multigrid

dRK5 fRK5

initial optimized initial optimized

α21 0.0791451 0.04865009589 0.04865009589 0.04877436325
α31 - - 0.0 -0.0002188348438
α32 0.163551 0.130316854 0.130316854 0.1300906122
α41 - - 0.0 2.608884832e-05
α42 - - 0.0 2.444376496e-05
α43 0.283663 0.2729621396 0.2729621396 0.2734805705
α51 - - 0.0 -0.001250385487
α52 - - 0.0 -0.0007838720635
α53 - - 0.0 -0.0004890887712
α54 0.5 0.5 0.5 4.412139367
α61 - - 0.0 0.8097217358
α62 - - 0.0 0.08435089009
α63 - - 0.0 -0.01986799007
α64 - - 0.0 0.01359815476
α65 1.0 1.0 1.0 0.1121972094
β1 0.0791451 0.04865009589 0.04865009589 0.5551936269
β2 0.163551 0.130316854 0.130316854 0.1333199239
β3 0.283663 0.2729621396 0.2729621396 -1.332263675
β4 0.5 0.5 0.5 -3.649588578
β5 1.0 1.0 1.0 0.46771792

CFLτ 0.4 0.4 0.4 0.4
VNτ 0.4 0.4 0.4 0.4

ρS 10.684 0.98974 0.98974 0.9896

ρMG 124.02 0.90049 0.90049 0.89903

Table 5.2: Initial and optimized coefficients for the dRK5 and fRK5 smoothers
for 3-level multigrid for steady flows with CFL∆t = 100 and Rex = Rey = 100.
The flow angle is γflow = π/4 and element aspect-ratio AR = 1. Here, ν1 =
ν2 = ν3 = ν4 = 1, νC = 4 and γ = 1.
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(a) Stability domain dRK5.
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(b) Stability domain fRK5.
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(c) Spectrum of Lh and stability domain
dRK5.
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(d) Spectrum of Lh and stability domain
fRK5.

Figure 5.3: Stability domain of the dRK5 smoother (left) and the fRK5 smoother
(right) and eigenvalue spectra of Lh for space-time DG discretizations of the
2D advection-diffusion equation using linear basis functions (steady flow case,
CFL∆t = 100).
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(a) Eigenvalue spectra dRK5 smoother.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

Spectrum of smoother

 

 

low

high

(b) Eigenvalue spectra fRK5 smoother.
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(c) Eigenvalue spectra 3-level MG with
dRK5.
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Figure 5.4: Eigenvalue spectra of the dRK5 smoother (left) and the fRK5
smoother (right) for space-time DG discretizations of the 2D advection-diffusion
equation using linear basis functions (steady flow case, CFL∆t = 100).
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(c) Spectrum of Lh and stability domain
dRK5.
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(d) Spectrum of Lh and stability domain
fRK5.

Figure 5.5: Stability domain of the dRK5 smoother (left) and the fRK5 smoother
(right) and eigenvalue spectra of Lh for space-time DG discretizations of the 2D
advection-diffusion equation using quadratic basis functions (steady flow case,
CFL∆t = 100).
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Figure 5.6: Eigenvalue spectra of the dRK5 smoother (left) and the fRK5
smoother (right) for space-time DG discretizations of the 2D advection-diffusion
equation using quadratic basis functions (steady flow case, CFL∆t = 100).
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Similarly, if AR is small, the scaling of La
y and Ld

y in (5.6) and (5.7) becomes
large so that the discretization terms in the y-direction are dominant. If viscosity
becomes important, in for instance a boundary layer, the diffusion operators Ld

x

and Ld
y in (5.7) start to dominate over the advection terms (5.6) resulting also

in slower convergence. In this section we introduce a rescaling to the pseudo-
time algorithm. This rescaling is possible since we are only interested in fast
convergence to steady-state in pseudo-time and not in pseudo-time accuracy.
We introduce a rescaling that better balances the different operators for all
aspect ratio cells, whether the flow is inviscid or viscous. This in contrast
to the pseudo-time algorithm in [40] in which a combination of two Runge-
Kutta smoothers was used for flows with inviscid and viscous regions: the EXI
Runge-Kutta smoother for inviscid flows and the EXV Runge-Kutta smoother
for viscous flows. This scaling is important since it also allows to optimize the
multigrid algorithm for only the unit aspect ratio.

Consider again the pseudo-time system (5.11). The reason why the multigrid
algorithm performs badly on high aspect ratio cells is related to the scalings of
La,d

x,y in (5.6) and (5.7). Adding a rescaling S to the l.h.s. of (5.11) balances the
different operators:

SM∂û∗

∂τ
= −Lh(û∗; ûn−1). (5.50)

There are different options as to how to choose the rescaling S. We introduce
the following rescaling:

S =

√
1 + AR2

√
8

(
cos(γflow) +

sin(γflow)

AR

)
+

1√
8

(
1

Rex
+

1

Rey

)
,

which is just (Γa
x + Γa

y + Γd
x + Γd

y)/CFL and scaled such that when γflow = π/4,
Rex = Rey = ∞ and AR = 1, then S = 1.

5.6 Testing multigrid performance

In order to demonstrate the performance of the optimized algorithms we con-
sider the following initial boundary value problem:

ut + aku,k − ν(u,k),k = 0, (x1, x2) ∈ Ω = (0, 1)2, t ∈ R+,

u(x1, x2, t) = g(x1, x2), (x1, x2) ∈ ∂Ω, t ∈ R+,

u(x1, x2, 0) = 1 − 1
2 (x1 + x2) (x1, x2) ∈ Ω,

(5.51)

in which g(x1, x2) equals at the domain boundary the exact steady state solution
of (5.51) given by:

u(x1, x2) =
1

2

(
exp(a1/ν1) − exp(a1x1/ν1)

exp(a1/ν1) − 1
+

exp(a2/ν2) − exp(a2x2/ν2)

exp(a2/ν2) − 1

)
.
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Figure 5.7: Solution to the advection-diffusion equation given by (5.51) on a
Shishkin mesh with flow angle γflow = π/4.

We consider two flow angles with respect to the x-axis, respectively, π/4 and
π/8. In the discretization we use a Shishkin mesh in which the coordinates
(xu, yu) of a uniform mesh are mapped onto a mesh suitable for dealing with
boundary layers. The mapping is given by:

xi =

{
2(1 − σi)x

u
i , for xu

i < 0.5

1 + 2σi(x
u
i − 1), for xu

i ≥ 0.5
, i = 1, 2, x = x1, y = x2,

where σi = min(0.5, 2ν/a ln(Ni)), and where Ni is the number of elements in
the xi direction.

In Figure 5.7 we show the solution on a Shishkin mesh with flow angle
γflow = π/4. In Figures 5.8 and 5.9, we show the convergence results using
different smoothers in the 3-level multigrid. In Figure 5.10 we make a zoom
of Figure 5.9 closer to the vertical axis. In these figures, one work unit on the
fine grid is defined as one full Runge-Kutta step. On the medium grid, one full
Runge-Kutta step corresponds to 1/4 work units while on the coarsest grid a
full Runge-Kutta step corresponds to 1/16 work units. It follows that one full
multigrid cycle then corresponds to (ν1 + ν2) + (ν3 + ν4)/4 + νC/16 work units.

The parameters in the test cases are the following: we consider one physical
time step, with ∆t = 100, a =

√
2, νx = νy = 0.01, N1 = N2 = 32, and two

flow angles, viz. γflow = π/4 and γflow = π/8. Depending on the stability
of the smoother, we use different CFLτ and VNτ numbers. For the original
EXI-EXV pseudo-time stepping scheme, see [40], we define Rei = a∆x2

i /(νih),
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Figure 5.8: Convergence results of space-time DG using linear basis functions for
three level multigrid algorithms with different Runge-Kutta smoothers. (dRK5,
diagonal explicit 5-stage RK scheme, fRK5 general explicit 5-stage RK scheme,
EXI-EXV scheme [40], exact and approximate solution of equations on coarsest
mesh).
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Figure 5.9: Convergence results of space-time DG using quadratic basis func-
tions for three level multigrid algorithms with different Runge-Kutta smoothers.
(dRK5, diagonal explicit 5-stage RK scheme, fRK5 general explicit 5-stage RK
scheme, EXI-EXV scheme [40], exact and approximate solution of equations on
coarsest mesh).



110
Chapter 5: h-Multigrid optimization for higher order accurate

ST-DG

Work units

L
/
L

0

1000 2000 3000 4000 5000
10

4

10
3

10
2

10
1 dRK5 coarse approx.

fRK5 coarse approx.
EXI/EXV coarse approx.

dRK5 coarse exact
fRK5 coarse exact

EXI/EXV coarse exact

(a) Flow angle π/4 (zoom).

Work units

L
/
L

0

1000 2000 3000 4000 5000
10

4

10
3

10
2

10
1

dRK5 coarse approx.
fRK5 coarse approx.
EXI/EXV coarse approx.

dRK5 coarse exact
fRK5 coarse exact

EXI/EXV coarse exact

(b) Flow angle π/8 (zoom).

Figure 5.10: Zoom of the convergence results of space-time DG using quadratic
basis functions for three level multigrid algorithms with different Runge-Kutta
smoothers. (dRK5, diagonal explicit 5-stage RK scheme, fRK5 general explicit
5-stage RK scheme, EXI-EXV scheme [40], exact and approximate solution of
equations on coarsest mesh).
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with h = ∆x1

√
1 + AR2. The EXV scheme was used when Rei ≤ 1 and the

EXI scheme was used otherwise. For the EXI-EXV smoother in [40], no mass-
matrix was used in the pseudo-time calculation. The mass-matrix was, however,
used in the computations with the optimized smoothers. For the multigrid
computations, ν1 = ν2 = ν3 = ν4 = 1, γ = 1 and νC = 4 for the approximate
calculation on the coarse mesh. Both an exact solution of the linear system on
the coarsest mesh and an approximate solution with νC pseudo-time iterations
on the coarse mesh were tested.

Comparing the results shown in Figures 5.8 and 5.9 we can draw the following
conclusions. First of all, we see that using the optimized Runge-Kutta smoothers
of Tables 5.1 and 5.2 a big improvement is obtained over the original EXI-EXV
smoother. For linear basis functions and a flow angle of π/8 the number of work
units to obtain 4 orders reduction in the residual is reduced from 4507 to 379.
For quadratic basis functions and a flow angle of π/4 the number of work units
reduces from 21254 to 184.

For linear basis functions the difference in convergence rate between Runge-
Kutta smoothers with only non-zero diagonal terms versus Runge-Kutta smoothers
with all coefficients non-zero in (5.12) is negligible. For quadratic basis functions
this difference is, however, significant. Using more Runge-Kutta coefficients en-
larges the possibilities to optimize the smoother, but the optimization process
requires a significantly larger computing time. In order to speed up the opti-
mization process the coefficients of Runge-Kutta schemes with only non-zero
diagonal terms are used as initial values.

The effect of solving the equations on the coarsest mesh with high accuracy is
very large. Without this the multigrid convergence significantly slows down after
a rapid initial decrease of the residual. In particular, for nonlinear problems it is
tempting to solve the algebraic system on the coarsest mesh only approximately,
because otherwise a global Newton solver is required. The effect of solving the
algebraic equations on the coarsest mesh accurately is, however, non-negligible.

The flow angle has a mild effect on the convergence rate. In general if the
flow direction is close to one of the mesh lines the convergence rate is the slowest.

It is important not to extrapolate the results for the advection-diffusion
equation directly to the Euler and Navier-Stokes equations. In these cases other
aspects than optimizing the smoother are also important. In particular, the
discretization and solution on the coarse meshes needs further investigation.





CHAPTER 6

Multigrid algorithms for higher order
space-time discontinuous Galerkin

discretizations of the Euler equations

In Chapter 5 we used Fourier analysis to optimize h-multigrid algorithms for second

and third order accurate space-time DG discretizations of the 2D advection-diffusion

equation. In this chapter we extend this analysis to three-level p- and hp-multigrid

methods. We, however, consider only the EXI Runge-Kutta smoother [79]. To com-

pare the efficiency of the h-, p- and hp-multigrid methods, we present some preliminary

results of a more complex test case in which we solve the compressible Euler equations.

6.1 Space-time DG for the Euler equations

In this section we summarize the space-time DG method for the Euler equations.
We start by introducing the space-time formulation after which the space-time
DG weak formulation is discussed. After introducing a polynomial approxima-
tion in the weak formulation a system of algebraic equations is obtained. Finally,
we summarize the pseudo-time integration and the explicit EXI Runge-Kutta
method. See also [79].
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6.1.1 Space-time formulation

In the space-time DG method, the space and time variables are treated together.
A point at time t = x0 with position vector x̄ = (x1, x2) has Cartesian coordi-
nates x = (x0, x̄) in the open domain E ⊂ R3. At time t, the flow domain Ω(t)
is defined as Ω(t) := {x̄ ∈ R2 : (t, x̄) ∈ E}. By taking t0 and T as the initial
and final time of the evolution of the space-time flow domain, the space-time
domain boundary ∂E consists of the hyper-surfaces Ω(t0) ≡ {x ∈ ∂E : x0 = t0},
Ω(T ) ≡ {x ∈ ∂E : x0 = T} and Q ≡ {x ∈ ∂E : t0 < x0 < T}. Let the initial
flow field be denoted by U0 and the boundary data by U b. Then, using index
notation with the summation convention on repeated indices and the comma
notation to denote partial differentiation, the Euler equations can be written
as: 




U,0 + Fk(U),k = 0, on E ,

U = U0, on Ω(t0),

U = U b, on Q,

(6.1)

with U ∈ R4 the vector of conservative variables and F ∈ R4×2 the inviscid flux
given by:

U =




ρ
ρuj

ρE


 , Fk =




ρuk

ρujuk + pδjk

uk(ρE + p)


 , (6.2)

where j, k = 1, 2. The Euler equations are completed with the equation of state
for a calorically perfect gas: p = (γ−1)ρ(E− 1

2uiui), with γ the ratio of specific
heats.

6.1.2 Weak formulation and discretization

The approximation Ωh(tn) of the flow domain Ω(tn) is divided into Nn non-
overlapping spatial elements Kj(tn). The space-time elements Kn

j are con-

structed by connecting Kn
j with Kn+1

j using linear interpolation in time. The
flow domain E , limited to the time interval (tn, tn+1), defines a space-time slab,
En

h . The tessellation T n
h of En

h consists of all space-time elements Kn
j .

Within a space-time slab we distinguish faces connecting space-time slabs,
Kj(t

+
n ) and Kj(t

−
n+1), internal faces Sn

I and boundary faces Sn
B . The outward

space-time normal vector on a space-time element Kn
j is denoted by n = (nt, n̄),

with nt the temporal and n̄ the spacial part of the outward normal vector.
On an internal face S ∈ SI , the traces from the left and right element are
denoted by (·)L and (·)R, respectively. The average operator is defined as {{·}} =
1
2 ((·)L + (·)R) and the jump operator as [[·]]k = (·)Ln̄L

k + (·)Rn̄R
k .
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We consider approximations of U(x) and test functions V (x) in the finite
element space Wh defined as:

W p
h =

{
W ∈ (L2(Eh))4 : W |K ◦ Gn

K ∈ P p(K̂), ∀K ∈ Th

}
,

where L2(Eh) is the space of square integrable functions on Eh, P p(K̂) the space
of polynomials of degree at most p on reference element K̂ = (−1, 1)3 and Gn

K

the mapping from the master element to the space-time element Kn
j .

Considering only fixed grids, the space-time DG weak formulation of the
Euler equations is: Find a U ∈ Wh such that for all V ∈ Wh:

−
∑

K∈Th

∫

K

(
Vi,0Ui + Vi,kFik

)
dK +

∑

S∈Sn
I

∫

S

(V L
i − V R

i )Hi dS

+
∑

K∈Th

(∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UR

i dK

)
+

∑

S∈Sn
B

∫

S

V L
i Hi dS = 0,

(6.3)

in which H = H(UL, UR, n̄L) is the inviscid numerical flux. Following [79] we
use the HLLC approximate Riemann solver given by:

Hi = 1
2

(
FL

ikn̄L
k + FR

ikn̄R
k

)
+ 1

2

(
(|SM | − |SL|)UL

i∗ + |SL|UL
i

)

+ 1
2

(
(|SR| − |SM |)UR

i∗ − |SR|UR
i

)
,

with FL,R = F (UL,R). The intermediate states UL
∗ and UR

∗ are given by:

UL,R
∗ =

SL,R − qL,R

SL,R − SM
+

1

SL,R − SM




0
(p∗ − pL,R)n̄L

k

p∗S
M − pL,RqL,R


 ,

with q = n̄L
k uk the normal velocity and p∗ the intermediate pressure:

p∗ = ρL(SL − qL)(SM − qL) + pL = ρR(SR − qR)(SM − qR) + pR.

The middle wave speed SM is defined as:

SM =
ρRqR(SR − qR) − pR − ρLqL(SL − qL) + pL

ρR(SR − qR) − ρL(SL − qL)
,

and the left and right wave speeds as SL = min{qL − aL, qR − aR} and SR =
max{qL + aL, qR + aR}, respectively, with q =

√
γp/ρ the speed of sound. For

more information on the derivation of the space-time DG weak formulation, we
refer to [79].
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The space-time DG system of algebraic equations is obtained by approxi-
mating the test and trial functions in (6.3) in each element K ∈ T n

h with the
polynomial expansions:

U(t, x̄)|K = Ûiψi(t, x̄), V (t, x̄)|K = V̂jψj(t, x̄), (6.4)

where ψi are the basis functions and Ûi and V̂j the expansion coefficients, re-
spectively, for i, j = 0, 1, 2, ..., N, and N depends on the polynomial degree
of the basis functions in Wh. On the reference element K̂, the basis func-
tions ψ̂i(ξ) ∈ P p(K̂) are a combination of one-dimensional Legendre polyno-
mials. They are related to ψi(x) in element K through the mapping Gn

K:

ψi = ψ̂i ◦ (Gn
K)−1. The system of algebraic equations is written compactly

as Lh(Ûn; Ûn−1) = 0.

6.1.3 Pseudo-time integration and Runge-Kutta methods

Following [79], to solve the system of coupled equations for the expansion coef-
ficients Lh(Ûn; Ûn−1) = 0, a pseudo-time derivative is added to the system:

|Kj |
∂Û∗(Kj)

∂τ
= − 1

∆t
Lh(Û∗; Ûn−1), (6.5)

which is integrated to steady-state in pseudo-time. At steady state, Ûn = Û∗.
To solve (6.5), we investigate the use of h-, p- and hp-multigrid methods with
the explicit 5-stage EXI Runge-Kutta smoother [79]. For notational purposes,
we set Lh(V̂ ∗; Ûn−1) = Lh(V̂ ∗). Initialize V̂ 0 = Ûn−1. The EXI smoother is
given by:

V̂ j =

(
V̂ 0 + αj∆τ

(
V̂ j−1 − Lh(V̂ j−1)/(|Kj |∆t)

))
/(I + αj∆τI), j = 1, ..., 5.

(6.6)
with Ûn = V̂ 5. The Runge-Kutta coefficients at stage j are denoted by αj

and defined as: α1 = 0.0791451, α2 = 0.163551, α3 = 0.283663, α4 = 0.5 and
α5 = 1.0. The matrix I represents the identity matrix. For notational purposes
we also write (6.6) as:

Ûn = Sh|pÛ
n−1. (6.7)

Here h refers to the grid discretization while p refers to the polynomial order.

6.2 Multigrid methods

In this section we present the h-, p- and hp-multigrid methods for solving the
non-linear system of algebraic equations resulting from the space-time DG dis-
cretization of the Euler equations.
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6.2.1 h-Multigrid algorithm

In an h-multigrid technique we introduce a finite sequence Nc of increasingly
coarser meshes Gnh, n ∈ {1, ..., Nc} to generate coarser approximations of the
original problem. For 1 ≤ n < m ≤ Nc, restriction operators Rmh

nh : Gnh →
Gmh for the solution and R̄mh

nh : Gnh → Gmh for the residuals, together with
prolongation operators Pnh

mh : Gmh → Gnh are introduced to transfer the data
on the different meshes. Following [42], we define the prolongation operator
Pnh

mh for the space-time DG discretization as:

Ûnh
ki = (M−1

nh)il

(∫

Knh

ψnh
l ψmh

j dK
)

Ûmh
kj

= (Pnh
mh)ijÛ

mh
kj , 1 ≤ n < m ≤ Nc,

(6.8)

where Mnh is the mass matrix of the space-time element Knh ∈ T n
nh. The mass

matrix Mnh is defined as:

(Mnh)li =

∫

Knh

ψnh
l ψnh

i dK. (6.9)

The restriction operator for the solution is defined as Rmh
nh = (Pnh

mh)−1, while the
restriction operator for the residuals is defined as Rmh

nh = 1
4 (Pnh

mh)T . In (6.8),
the embedding of spaces was assumed, i.e. Wmh ⊂ Wnh with m > n to ensure
that Umh is defined on Knh.

In the h-multigrid technique, to solve the non-linear system Nh(Uh) = fh

on Gh, with Nh the nonlinear operator and fh a given righthand side, a set
of auxiliary problems is solved. At each grid level Gnh, 1 ≤ n ≤ Nc, we solve
Nnh(Unh) = fnh using the EXI Runge-Kutta method. The h-multigrid Full
Approximation Scheme (FAS), is defined as follows:

Definition 6.2.1. hMGn-Algorithm. Start with the initial guess V 0
nh.

if n = Nc, the coarsest mesh, then solve (e.g. with a Newton method)

V 1
nh = hMGn(V 0

nh, fnh, ν1, ν2) := N−1
nh fnh, (6.10)

else the multigrid algorithm hMGn at the mesh Gnh is defined as

1. (Pre-smoothing). Let U0
nh = V 0

nh and define Uν1

nh by

U l+1
nh = Snh|pU

l
nh, l = 0, 1, · · · , ν1 − 1;

with Snh|p the smoothing operator at grid level n given in (6.7).
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2. (Restricting). Restrict the residual and solution to the coarser mesh Gmh

with n < m ≤ Nc,

Z0
mh = Rmh

nh Uν1

nh,

rmh = Nmh(Rmh
nh Uν1

nh) + R̄mh
nh (fnh −NnhUν1

nh).

3. (Coarse-grid solving). At grid level m repeat the hMGm-algorithm γ-times

Zl
mh = hMGm(Zl−1

mh , rmh, ν1, ν2), l = 1, · · · , γ.

4. (Correcting). Let Y 0
nh = Uν1

nh + Pnh
mh(Zγ

mh − Rmh
nh Uν1

nh).

5. (Post-smoothing). Define Y ν2 by

Y l+1
nh = Snh|pY

l
nh, l = 0, 1, · · · , ν2 − 1.

Finally, set V 1
nh = hMGn(V 0

nh, fnh, ν1, ν2) := Y ν2

nh as the result of the hMGn-
algorithm.

Using different sequences of meshes Gnh various multigrid cycles, such as
the V, W or F-cycle can be constructed.

6.2.2 p-Multigrid method

In the p-multigrid method, lower order approximations Uq, q < p, on the same
grid serve as coarse approximations in the solution of the non-linear system
N (Up) = f . Let Np be the number of p-levels. To transfer the solution and
residuals between the lower-order W q

h and higher-order W p
h spaces, 1 ≤ q < p ≤

Np, we follow [9]. The solution Up
i ∈ W p

h can be obtained from Uq
i ∈ W q

h by
solving: ∫

Kh

V p
i Up

i dK =

∫

Kh

V p
i Uq

i dK, ∀V p ∈ W p
h . (6.11)

Replacing the test and trial functions in (6.11) by their polynomial expansions
(6.4) gives:

Mp
lmÛp

im =

(∫

Kh

ψp
l ψp

m dK
)

Ûp
im =

(∫

Kh

ψp
l ψq

n dK
)

Ûq
in =: (Mp

q)lnÛq
in.

The prolongation operator Pp
q then is defined as:

Ûp
im = (Mp)−1

ml(Mp
q)lnÛq

in = (Pp
q )mnÛq

in. (6.12)
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Similarly, the solution restriction operator Rq
p is defined as:

Ûq
in = (Mq)−1

nl (Mq
p)lmÛp

im = (Rq
p)nmÛp

im, (6.13)

while the residual restriction operator is defined as R̄q
p = (Pp

q )T .
In the p-multigrid technique, to solve the non-linear system N p(Up) = fp

for the pth-order solution Up, with f a given righthand side, a set of auxiliary
problems is solved. For each level n, 1 ≤ n ≤ Np, we solve Nn(Un) = fn using
the EXI Runge-Kutta method. The p-multigrid algorithm is defined as follows:

Definition 6.2.2. pMGp-Algorithm. Start with the initial guess V 0
p .

if p = 1, the lowest polynomial order, then solve (e.g. with a Newton method)

V 1
p = pMGp(V

0
p , fp, νp

1 , νp
2 ) := N−1

p fp, (6.14)

else the multigrid algorithm pMG, for polynomial order p is defined as

1. (Pre-smoothing). Let U0
p = V 0

p and define U
νp
1

p by

U l+1
p = Sh|pU

l
p, l = 0, 1, · · · , νp

1 − 1;

with Sh|p the smoothing operator in (6.7).

2. (Restricting). Restrict the residual and solution to the lower polynomial
order q, 1 ≤ q < p,

Z0
q = Rq

pU
νp
1

p ,

rq = Nq(Rq
pU

νp
1

p ) + R̄q
p(fp −NpU

νp
1

p ).

3. (Coarse-grid solving). At the polynomial order q repeat the pMGq-algorithm
γq-times

Zl
q = pMGq(Z

l−1
q , rq, ν

p
1 , νp

2 ), l = 1, · · · , γq.

4. (Correcting). Let Y 0
p = U

νp
1

p + P p
q (Zγp

q − Rq
pU

νp
1

p ).

5. (Post-smoothing). Define Y νp
2 by

Y l+1
p = Sh|pY

l
p , l = 0, 1, · · · , νp

2 − 1.

Finally, set V 1
p = pMGp(V

0
p , fp, ν

p
1 , νp

2 ) := Y
νp
2

p as the result of the pMGp-
algorithm.
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6.2.3 hp-Multigrid method

A combined h- and p-multigrid method is obtained if we replace in the pMG
algorithm the p = 1 step, (6.14), by calling the hMG algorithm to solve the
lowest order problem. Note that by calling the hMG algorithm, the system
of non-linear algebraic equations to be solved is very small compared to the
original problem and it will therefore be relatively cheap to solve with e.g. a
Newton method.

6.3 Fourier analysis for p- and hp-multigrid

In this section we use three-level Fourier analysis to investigate the p- and hp-
multigrid algorithm. For this we consider space-time DG discretizations of the
2D advection-diffusion equation using quadratic basis functions. The aim of the
Fourier analysis is to calculate the spectral radius which gives a prediction of
the asymptotic rate of convergence of the multigrid method. For a three-level
Fourier analysis of the h-multigrid algorithm and more details on the notation
and derivations, we refer to Chapter 5.

6.3.1 p-Multigrid error transformation operator

The derivation of the p-multigrid error transformation operator is similar to that
of the h-multigrid error transformation operator given in Chapter 5. Therefore,
we only introduce the definition of the p-multigrid error transformation operator.

Definition 6.3.1. The multigrid error transformation operator Mh|p of order
p is defined recursively for p = Np, Np − 1, ..., 1 as:

Mh|p = S
νp
2

h|p(I
p − Pp

p−1(I
p−1 − Mγp

h|p−1)L
−1
h|p−1Rp−1

p Lh|p)S
νp
1

h|p, (6.15)

with Sh|p the smoother (6.7), νp
1 , νp

2 the number of pre- and post-smoothing

iterations and γp is the cycle index. When p = 1, Mγp

h|p−1 = 0.

6.3.2 Three-level p-multigrid Fourier analysis

To couple the three-level p-multigrid Fourier analysis to the three-level h-multigrid
Fourier analysis, we consider the 16-dimensional subspace given by (5.40) in
Chapter 5, otherwise it would not be necessary to consider these modes simul-
taneously. Since the p-multigrid algorithm only acts on one grid, the p-multigrid
Fourier analysis is much easier compared to the three-level h-multigrid Fourier
analysis.
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We introduce the following matrices:

L̂p
2g(θβ) = diag (L̂h|p(θ

00
β ), L̂h|p(θ

11
β ), L̂h|p(θ

10
β ), L̂h|p(θ

01
β )) ∈ C4mp×4mp

Ŝp
2g(θβ) = diag (Ŝh|p(θ

00
β ), Ŝh|p(θ

11
β ), Ŝh|p(θ

10
β ), Ŝh|p(θ

01
β )) ∈ C4mp×4mp

R̂p|p−1
2g (θβ) = diag (R̂p|p−1

h (θ00
β ), R̂p|p−1

h (θ11
β ), R̂p|p−1

h (θ10
β ), R̂p|p−1

h (θ01
β )) ∈ C4mp×4mp

P̂p−1|p
2g (θβ) = diag (P̂p−1|p

h (θ00
β ), P̂p−1|p

h (θ11
β ), P̂p−1|p

h (θ10
β ), P̂p−1|p

h (θ01
β )) ∈ C4mp×4mp ,

with L̂h|p, Ŝh|p, R̂p|p−1
h , P̂p−1|p

h , respectively the Fourier symbols of the dis-
cretization, smoother, restriction and prolongation operators, see Chapter 5.
We also introduce the matrices

L̂p
3g(θ) = diag

(
L̂p

2g(θ00), L̂
p
2g(θ 1

2
1
2
), L̂p

2g(θ 1
2 0), L̂

p
2g(θ0 1

2
)
)
∈ C16mp×16mp

Ŝp
3g(θ) = diag

(
Ŝp

2g(θ00), Ŝ
p
2g(θ 1

2
1
2
), Ŝp

2g(θ 1
2 0), Ŝ

p
2g(θ0 1

2
)
)
∈ C16mp×16mp

R̂p|p−1
3g (θ) = diag

(
R̂p|p−1

2g (θ00), R̂p|p−1
2g (θ 1

2
1
2
), R̂p|p−1

2g (θ 1
20), R̂p|p−1

2g (θ0 1
2
)
)
∈ C16mp×16mp

P̂p−1|p
3g (θ) = diag

(
P̂p−1|p

2g (θ00), P̂p−1|p
2g (θ 1

2
1
2
), P̂p−1|p

2g (θ 1
2 0), P̂p−1|p

2g (θ0 1
2
)
)
∈ C16mp×16mp .

The Fourier symbol of the three-level p-multigrid error transformation operator
M̂h|p(θ) ∈ C16mp×16mp then is equal to

M̂h|p(θ) =
(
Ŝp

3g(θ)
)νp

2 K̂3g(θ)
(
Ŝp

3g(θ)
)νp

1 ,

K̂3g(θ) = Îp
3g − P̂p−1|p

3g (θ)(Îp−1
3g − (Up−1

3g )γp

)(L̂p−1
3g )−1(θ)R̂p|p−1

3g (θ)L̂p
3g(θ),

(6.16)

for θ ∈ Θ4h \ Ψ3g and Îp
3g ∈ R16mp×16mp identity matrix. Furthermore, U3g is

given by:

(Uq
3g)

γp

=





(M̂h|p−1(θ))
γp

, if q = p − 1,

0, if q = p − 2 and one level h−multigrid,

M̂3g(θ), if q = p − 2 and three level h−multigrid,

where M̂3g(θ) is (5.48), given in Chapter 5, applied to a (p − 2)th-order space-
time DG discretization.

6.3.3 Results from Fourier analysis

Using the Fourier analysis of the previous sections, we will determine the spectral
radius of the different multigrid techniques to solve the system of algebraic
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equations resulting from the space-time DG discretization of the 2D advection-
diffusion equation. We compare the spectral radii obtained from single grid, h-,
p- and hp-multigrid.

We consider quadratic basis functions and the following parameters: CFL =
100, Rex = Rey = 100, AR = 1, γflow = π/4, CFLτ = VNτ = 1, ν∗

1 = ν∗
2 = 5

and ν∗
C = 10, where ∗ = h, p. Furthermore, γ∗ = 1. The results of the Fourier

analysis are given in Table 6.1. The “work” column represents the amount
of work needed to converge the solution six orders with respect to its original
error. This column is more representative when comparing the efficiency of the
different multigrid techniques. This is because the spectral radius only predicts,
in the asymptotic regime, the amount of multigrid cycles needed for convergence.
However, the amount of work per multigrid cycle differs per technique:

work per cycle =





gpbp, SG,

(gpbp + gp−1bp−1)(νp
1 + νp

2 ) + gp−2bp−2νp
C , pMG,

gpbp
(
(ch + ch−1)(νh

1 + νh
2 ) + ch−2νh

C

)
, hMG,

ch(gpbp + gp−1bp−1)(νp
1 + νp

2 )+

gp−2bp−2((ch + ch−1)(νh
1 + νh

2 ) + ch−2νh
C), hpMG,

where gp is the number of Gauss quadrature points in an element in the space-
time discretization depending on the polynomial order p, bp the number of
basis functions depending on the polynomial order p and ch a weighting for the
number of cells depending on the grid-level h. We have: gp = 9, gp−1 = 4,
gp−2 = 1, bp = 6, bp−1 = 4, bp−2 = 1, ch = 1, ch−1 = 1/4 and ch−2 = 1/16.
For example, for the single grid (SG) computation, which has a spectral radius
ρ = 0.99418, the number of cycles to converge six orders, Nc, follows from
ρNc = 10−6 → Nc = 1389. The amount of work then equals 9 · 6 · 1389 = 75006.
From Table 6.1 we can obtain the following conclusions. All multigrid methods
perform better than a single-grid method and the h-multigrid method has the
best theoretical performance. For the non-linear test case in Section 6.4.2, we
will, however, need for the h-multigrid method a CFLτ number which is twice
as small compared to the CFLτ number for the single-grid, p- and hp-multigrid
methods. From Table 6.1 it follows that p- and hp-multigrid methods then
will perform better than the h-multigrid method, but the h-multigrid method
still performs better than single-grid methods. Furthermore, we remark that
in the Fourier analysis it does not make much difference if we solve the coarse
grid problem in the h-multigrid, or the lowest order stage of the p-multigrid
algorithm, exactly or via νC iterations of the EXI Runge-Kutta smoother. This
also explains why there is hardly any difference in spectral radius between the
p- and hp-multigrid techniques.

In Figure 6.1 we plot the spectrum of Lh, the space-time discretization oper-
ator of the 2D advection-diffusion equation, and the stability domain of the EXI
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p-levels h-levels CF ÃLτ ρ work

1 1 1.0 0.99010 75006
3 1 1.0 0.74318 33370
3 3 1.0 0.73347 32091
1 3 1.0 0.66350 24098
1 3 0.5 0.80364 45360

Table 6.1: Spectral radii and work units of the different multigrid strategies.

smoother. The eigenvalue spectra of the single grid, h-, p- and hp- multigrid
techniques, are depicted in Figure 6.2.

Besides applying an h-multigrid technique as solver for the lowest-order prob-
lem in the p-multigrid algorithm, we could also have applied a p-multigrid tech-
nique as solver for the coarse grid problem in the h-multigrid algorithm. We,
however, chose not to follow this path due to findings of Yavneh [88] in which
it is shown that an enriched discretization on the coarsest grid in h-multigrid is
preferred.

6.4 Multigrid algorithms applied to the Euler
equations

In this section we apply the h-, p- and hp-multigrid algorithms to space-time
DG discretizations of the Euler equations. As a test case we will consider 2D
steady subsonic flow around a NACA0012 airfoil. The angle of attack is taken
to be α = 2◦ and we take a far-field Mach number of Ma = 0.5. We first discuss
the choice of basis functions for our DG discretization after which we discuss
the numerical results of a simulation.

6.4.1 Choosing the basis functions

For the NACA0012 test case we noticed that the choice of basis functions in the
space-time DG discretization Lh was important for the stability of the scheme.
We therefore calculate the spectrum of the complete discretization Lh, including
boundary conditions and high aspect ratio elements, for a number of choices of
basis functions. Since we consider a steady-state problem, the space-time DG
discretization is taken to be only first-order accurate in time but third-order
accurate in space. The spectrum of Lh is determined numerically by calculating
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Figure 6.1: Spectrum of Lh, the space-time discretization operator of the 2D
advection-diffusion equation, and the stability domain of the EXI Runge-Kutta
method.

the eigenvalues of the following approximation of the Jacobian of Lh:

∂Lh

∂U
=




...

...
∂Lcell=k

exp.coef=i

∂Ucell=k
exp.coef=i

∂Lcell=k
exp.coef=i

∂Ucell=k
exp.coef=i+1

...
∂Lcell=k

exp.coef=i

∂Ucell=k+1
exp.coef=i

∂Lcell=k
exp.coef=i

∂Ucell=k+1
exp.coef=i+1

...

...
∂Lcell=k

exp.coef=i+1

∂Ucell=k
exp.coef=i

∂Lcell=k
exp.coef=i+1

∂Ucell=k
exp.coef=i+1

...
∂Lcell=k

exp.coef=i+1

∂Ucell=k+1
exp.coef=i

∂Lcell=k
exp.coef=i+1

∂Ucell=k+1
exp.coef=i+1

...

...

...
∂Lcell=k+1

exp.coef=i

∂Ucell=k
exp.coef=i

∂Lcell=k+1
exp.coef=i

∂Ucell=k
exp.coef=i+1

...
∂Lcell=k+1

exp.coef=i

∂Ucell=k+1
exp.coef=i

∂Lcell=k+1
exp.coef=i

∂Ucell=k+1
exp.coef=i+1

...

...
∂Lcell=k+1

exp.coef=i+1

∂Ucell=k
exp.coef=i

∂Lcell=k+1
exp.coef=i+1

∂Ucell=k
exp.coef=i+1

...
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∂Ucell=k+1
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...




with
∂Lk

i

∂U j
l

=
Lk

i (U j
l ) − Lk

i (U j
l + ε)

ε
, ε =

√
10−13.
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(b) 3-level p-multigrid
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(c) 3-level hp-multigrid
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Figure 6.2: Eigenvalue spectra of the different multigrid techniques for the space-
time DG discretization of the 2D advection-diffusion test case using quadratic
basis functions.
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∆τ Normalized ∆τ

Option 1 0.0475 1
Option 2 0.0275 0.579

Scaled M̄ = I 0.0089 0.187
Orthonormal 0.0179 0.377

Table 6.2: Pseudo-time step ∆τ such that the spectrum of Lh with quadratic
basis functions lies within the stability domain of the EXI smoother. We nor-
malized ∆τ with respect to the ∆τ of the option 1 Legendre basis functions.

Let M be the mass-matrix (see (6.9)). On a uniform grid we can also write
M = ∆t|K|M̄ in which M̄ is dimensionless. With this definition we consider
the following sets of quadratic basis functions on the reference element K̂:

1. Legendre basis functions, option 1: ψ1 = 1, ψ2 = ξ1, ψ3 = ξ2, ψ4 =
ξ1ξ2, ψ5 = ξ2

1 − 1
3 , ψ6 = ξ2

2 − 1
3 (using Gram-Schmidt orthonormalization

see [32]).

2. Legendre basis functions, option 2: ψ1 = 1, ψ2 = ξ1, ψ3 = ξ2, ψ4 = ξ1ξ2,
ψ5 = 1

2 (3ξ2
1 − 1), ψ6 = 1

2 (3ξ2
2 − 1) (see [1], pg. 798).

3. Scaled quadratic basis functions such that M̄ = I: ψ1 = 1, ψ2 =
√

3ξ1,
ψ3 =

√
3ξ2, ψ4 = 3ξ1ξ2, ψ5 = 1

2

√
5(3ξ2

1 − 1), ψ6 = 1
2

√
5(3ξ2

2 − 1).

4. Orthonormal quadratic basis functions on the reference element K̂: ψ1 =√
0.5, ψ2 =

√
1.5ξ1, ψ3 =

√
1.5ξ2, ψ4 = 1.5ξ1ξ2, ψ5 = 1

2

√
2.5(3ξ2

1 − 1),

ψ6 = 1
2

√
2.5(3ξ2

2 − 1).

For all sets of basis functions, we plot the spectrum of Lh and the stability
domain of the EXI Runge-Kutta smoother in Figure 6.3. The calculations are
performed on a grid with 28 × 4 elements. For each set the pseudo-time step
∆τ was chosen such that the spectrum of Lh lies within the stability domain
of the smoother (see Table 6.2). We see that, depending on the choice of basis
functions, the largest pseudo-time step is five times larger than the smallest
pseudo-time step. The best choice is to take the Legendre basis functions,
option 1. We remark that the Fourier analysis of Section 6.3.3 and the numerical
simulations in Section 6.4.2 are done with the Legendre basis functions, option
1.
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(a) Quadratic Legendre basis functions,
option 1.
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(b) Quadratic Legendre basis functions,
option 2.
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(c) Scaled quadratic Legendre basis
functions s.t. M̄ = I.
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basis functions on K̂.

Figure 6.3: Spectrum of Lh on the grid around a NACA0012 airfoil.
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6.4.2 Simulations

We consider 2D steady subsonic flow around a NACA0012 airfoil with an angle
of attack of α = 2◦. We take a far-field Mach number of Ma = 0.5. As
mentioned in Section 6.4.1, since we consider a steady-state flow problem, we
use a space-time DG discretization which is only first-order accurate in time but
third-order accurate in space. The grid around the airfoil has 448×64 elements
and is shown in Figure 6.4. We consider five solution strategies to solve the
algebraic system resulting from the space-time DG discretization of the Euler
equations:

1. Single grid.

2. Three-level h-multigrid with νh
1 = νh

2 = νh
3 = νh

4 = 10. The coarse grid
problem is solved exactly using a matrix-free Newton method.

3. Three-level h-multigrid with νh
1 = νh

2 = νh
3 = νh

4 = 5. The coarse grid
problem is solved approximately taking νh

C = 20.

4. Three-level p-multigrid with νp
1 = νp

2 = νp
3 = νp

4 = 5. The lowest order
problem is solved approximately taking νp

C = 20.

5. Three-level hp-multigrid with ν∗
1 = ν∗

2 = ν∗
3 = ν∗

4 = 5, ∗ = h, p. The
coarse grid problem is solved approximately taking νh

C = 20.

For the single-grid, p- and hp-multigrid computations we used a pseudo-time
CFL number of CFLτ = 1.6, while for h-multigrid CFLτ = 0.8. Larger pseudo-
time CFL numbers for h-multigrid resulted in unstable calculations. The Mach
contours are given in Figure 6.5 while the convergence history plot is given in
Figure 6.6.

From Table 6.1 we expect hp-multigrid to be the best solution method and
single-grid to be the worst. We see, however, that p-multigrid is slightly better
than hp-multigrid. We also see that h-multigrid performs worst.

The hp-multigrid initially shows a significant improvement in the reduction
of the residual compared to the single-grid computation. In particular, in the
early cycles hp-multigrid is very efficient. In the asymptotic regime, however,
single-grid and hp-multigrid have approximately the same convergence rate.
The reason for this behavior is unclear yet. For the p-multigrid method, initial
convergence is significantly faster than for the single-grid computations, but in
the asymptotic regime a comparable convergence history with the single grid
computations is obtained.

Furthermore, initially the h-multigrid performs rather well, however, after
the high-frequency modes have been smoothed, h-multigrid efficiency quickly
deteriorates. A reason for this could be that at some point the coarse-grid



6.4 Multigrid algorithms applied to the Euler equations 129

(a) NACA0012 airfoil mesh: 448 ×

64 elements.
(b) Zoom of the mesh around the
airfoil.

Figure 6.4: The computational mesh used for inviscid subsonic flow around a
NACA0012 airfoil.

problem of the h-multigrid algorithm is not solved well with respect to the
characteristic components, as was demonstrated in [88]. This problem may be
overcome by employing an improved coarse grid operator. This has not been
studied in the present work, but is currently under investigation. We also see
that there is hardly any difference in solving the coarse grid problem exactly by
the Newton method or approximating the solution by performing νC smoothing
steps. This in contrary to the results obtained in Chapter 5 where we saw a
large improvement when solving the coarse grid problem exactly.
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Figure 6.5: Mach contours of inviscid flow around a NACA0012 airfoil.
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CHAPTER 7

An alternative derivation of the discontinuous
Galerkin finite element weak formulation

In Chapter 2 we introduced a discontinuous Galerkin (DG) finite element weak formu-
lation for PDE’s with nonconservative products. For this, we used the theory of Dal
Maso, LeFloch and Murat [54] in which a Borel measure was assigned to the noncon-
servative product so that even if the solution was discontinuous, the nonconservative
product was well defined. In this chapter we follow a similar approach to provide an
alternative derivation for DG weak formulations for hyperbolic PDE’s and a new DG
weak formulation for elliptic/parabolic PDE’s.

DG methods for hyperbolic PDE’s have been thoroughly investigated by Cockburn
and co-workers. Detailed surveys can be found in [16, 17]. In the derivation of the
DG weak formulation, commonly two different routes are followed. To explain these
different approaches, we consider a space DG discretization of a 1D scalar hyperbolic
PDE, ∂tu+∂xf(u) = 0, on a domain Ω. Denote by Th the tessellation of Ω and let Kk

be an element of the tessellation Th. The computational domain Ωh is the union of all
elements of the tessellation. Furthermore, let the exact solution u be approximated
by uh ∈ Wh with Wh a finite element space, and let vh ∈ Wh be a test function.

Following the first approach, the weak formulation of the PDE is not considered on
the whole domain, but rather on an element. The PDE is multiplied by a test function
vh ∈ Wh, integrated over an element K ∈ Th and u is replaced by its approximation
uh ∈ Wh:

0 =

Z

K

(vh∂tuh + vh∂xf(uh)) dK, ∀vh ∈ Wh.
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After integration by parts we obtain:

0 =

Z

K

(vh∂tuh − f(uh)∂xvh) dK +

Z

∂K

v
L
h f(uL

h )n̄L
d(∂K), ∀vh ∈ Wh, (7.1)

where n̄L is the outward unit normal to the boundary ∂K and uL is the trace at
the element boundary ∂K defined as uL = limε↓0 u(x − εn̄L). The problem with this
formulation, is that there is no coupling of element K with its neighboring elements. To
deal with this, the argument is used that the trace at an element boundary is double
valued because there is no direct relation with the data in a neighboring element.
This implies that the flux on an element boundary does not have a precise meaning.
A numerical flux f̂(uL, uR, n̄L) is therefore introduced by viewing the discontinuity on
an element boundary in the normal direction n̄L as a local Riemann problem. Here
uR is the trace on the element boundary on a neighboring element of K. Equation
(7.1) then becomes:

0 =

Z

K

(vh∂tuh − f(uh)∂xvh) dK +

Z

∂K

v
L
h f̂(uL

h , u
R
h , n̄

L) d(∂K), ∀vh ∈ Wh, (7.2)

which is solved for all elements of the tessellation Th.

The second approach avoids the problem of coupling the weak formulation on an
element to the weak formulation on neighboring elements by immediately considering
the whole computational domain. The PDE is multiplied by a test function vh ∈ Wh,
integrated over the element K ∈ Th and u is replaced by its approximation uh ∈ Wh.
After summation over all elements in the tessellation Th we obtain:

0 =
X

K∈Th

Z

K

(vh∂tuh + vh∂xf(uh)) dK, ∀vh ∈ Wh. (7.3)

Integration by parts then results in

0 =
X

K∈Th

Z

K

(vh∂tuh − f(uh)∂xvh) dK +
X

K∈Th

Z

∂K

v
L
h f(uL

h )n̄L
d(∂K), ∀vh ∈ Wh.

(7.4)
The coupling between the elements is achieved by noting that the summation over the
element boundaries can be written as a sum over element faces S:

X

K∈Th

Z

∂K

v
L
h f(uL

h )n̄L
d(∂K) =

X

S

Z

S

`

1

2
(vL

h n̄
L + v

R
h n̄

R)(f(uL
h ) + f(uR

h ))+

1

2
(vL

h + v
R
h )(n̄L

f(uL
h ) + n̄

R
f(uR

h ))
´

dS. (7.5)

Using now the argument that the formulation must be conservative, the following
condition is imposed:

Z

S

vhn̄
L
f(uL

h ) dS = −

Z

S

vhn̄
R

f(uR
h ) dS, ∀vh ∈ Wh, (7.6)
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so that the underlined term in (7.5) vanishes and (7.4) becomes:

0 =
X

K∈Th

Z

K

(vh∂tuh−f(uh)∂xvh) dK+
X

S

Z

S

(vL
h −v

R
h ) 1

2
(f(uL

h )+f(uR
h ))n̄L

dS, (7.7)

∀vh ∈ Wh, where we used n̄L = −n̄R. It is well known that the DG weak formula-
tion is unstable in this form. A numerical flux f̂(uL

h , uR
h , n̄L) is therefore introduced

to replace the central flux 1

2
(f(uL

h ) + f(uR
h ))n̄L in the face integrals. Note that in

the derivation of (7.2) the numerical flux plays two rolls, namely coupling of the ele-
ments and stabilization. Here, the numerical flux is only introduced for stabilization
purposes. We obtain:

0 =
X

K∈Th

Z

K

(vh∂tuh−f(uh)∂xvh) dK+
X

S

Z

S

(vL
h −v

R
h )f̂(uL

h , u
R
h , n̄

L) dS, ∀vh ∈ Wh.

(7.8)
The relation (7.6) is necessary for (7.8) and (7.2) to be the same. However, the
equality in (7.6) is mathematically not necessarily true so that the argument that the
formulation must be conservative is questionable (Take e.g. f = au, a = constant: in
DG u is discontinuous and so also f).

In the above we see that both routes have their problems. In the first route
it is the coupling of the elements while in the second route it is the conservation
assumption of the formulation to neglect part of the face integrals. In order to obtain
a mathematically more consistent derivation we introduce a new approach based on
Borel measures.

For elliptic and (incompletely) parabolic equations also various formulations are
presented in the literature. These include the method of Brezzi et al. [13], the LDG
method [18], the IP method [21], Bassi et al. [11] and NIPG [65]. An analysis of these
formulations is given in [6]. Articles dealing with the space-time DG formulation
of elliptic/(incompletely) parabolic equations are e.g. [41, 69]. Using the theory for
nonconservative products, it is possible to recover the method of Brezzi et al. [13], but
also to define a new weak formulation. We discuss both possibilities in this chapter.

The outline of this chapter is as follows. In Section 7.1 we summarize two theorems

on Borel measures. In Section 7.2 we discuss the space-time DG method presented

in [41, 79] while in Section 7.3 we present a derivation of the space-time DG weak

formulation based on Borel measures. We remark that the space-time DG method is a

generalization of the space DG method. We therefore omit the alternative derivation

for the space DG method since it is analogous. In Section 7.4 we perform numerical

simulations to investigate the accuracy of the different formulations.

7.1 Borel measures in DG

We will derive discontinuous Galerkin finite element formulations for systems of
partial differential equations of the form:

Fij(U),j = Ui,0 + Fik(U),k − (Aikrs(U)Ur,s),k = 0, x̄ ∈ Rq, t > 0, (7.9)
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with U ∈ Rm, F ∈ Rm×q, F ∈ Rm×(q+1) and A ∈ Rm×q×m×q; we use the
comma notation to denote partial differentiation and the summation conven-
tion on repeated indices. Here (·),0 denotes partial differentiation with respect
to time and (·),k, (k = 1, ..., q) partial differentiation with respect to the spa-
tial coordinates. In a space-time context, the space and time variables are,
however, not explicitly distinguished. A point at time t = x0 with position
x̄ = (x1, x2, ..., xq) has Cartesian coordinates x = (x0, x̄) ∈ Rq+1.

We introduce now some theorems. Let Ω ⊆ Rq+1 with Ω = Ωu ∪ Su, where
Ωu is the set of points of approximate continuity and Su the set of points of
approximate jump. If the product Aikrs(U)Ur,s in (7.9) cannot be written as
Gi,k, then Aikrs(U)Ur,s is a nonconservative product. Following [54, 64], assume
a given family of Lipschitz continuous paths φ : [0, 1] × Rm × Rm → Rm that
satisfy, for some K > 0 and for all UL, UR ∈ Rm, with UL and UR the left and
right traces at a discontinuity, and τ ∈ [0, 1], the properties:

(H1) φr(0;UL, UR) = UL
r , φr(1;UL, UR) = UR

r ,

(H2) φr(τ ;UL, UL) = UL
r ,

(H3)
∣∣∂φr

∂τ (τ ;UL, UR)
∣∣ ≤ K|UL

r − UR
r |, a.e. in [0, 1],

(H4) φr(τ ;UL, UR) = φr(1 − τ ;UR, UL).

The theory of Dal Maso, LeFloch and Murat [54] (DLM theory) then states (see
Chapter 2):

Theorem 7.1.1. Let U : Ω → Rm be a bounded function of bounded variation
defined on an open subset Ω of Rq+1 and A : Rm → Rm a locally bounded
Borel function. Then there exists a unique family of real-valued bounded Borel
measures µA

ik on Ω, i = 1, 2, ...,m, k = 1, ..., q such that

1. if B is a Borel subset of Ωu, then

µA
ik(B) =

∫

B

Aikrs(U)Ur,s dλ, (7.10)

where λ is the Borel measure;

2. if B is a Borel subset of Su, then

µA
ik(B) =

∫

B∩Su

∫ 1

0

Aikrs(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ nL

s dHq,

(7.11)
with UL and UR the left and right traces at the discontinuity, where Hq

denotes the q-dimensional Hausdorff measure and nL the outward normal
with respect to the left state.
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We remark that in the particular case that there is a G such that Gi(U),k =
Aikrs(U)Ur,s, then (7.11) becomes:

µA
ik(B) =

∫

B∩Su

(Gi(U
R) − Gi(U

L))nL
k dHq. (7.12)

In the special case of conservative fluxes Fik, we introduce the following theorem:

Theorem 7.1.2. Let U : Ω → Rm be a bounded function of bounded variation
defined on an open subset Ω of Rq+1 and F : Rm → Rm a locally bounded
Borel function. Then there exists a unique family of real-valued bounded Borel
measures µf

i on Ω, i = 1, 2, ...,m such that

1. if B is a Borel subset of Ωu, then

µf
i (B) =

∫

B

Fik(U),k dλ, (7.13)

where λ is a Borel measure;

2. if B is a Borel subset of Su, then

µf
i (B) =

∫

B∩Su

(Fik(UR) −Fik(UL))nL
k dHq, (7.14)

with UL and UR the left and right traces at the discontinuity, where Hq

denotes the q-dimensional Hausdorff measure and nL the outward normal
with respect to the left state.

7.2 Space-time DGFEM weak formulation

In this section we introduce space-time elements, function spaces, trace opera-
tors and we discuss the space-time DGFEM weak formulation.

7.2.1 Elements

In the space-time DGFEM method, the space and time variables are not dis-
tinguished. A point at time t = x0 with position vector x̄ = (x1, x2, ..., xq) has
Cartesian coordinates (x0, x̄) in the open domain E ⊂ Rq+1. At time t, the
flow domain Ω(t) is defined as Ω(t) := {x̄ ∈ Rq : (t, x̄) ∈ E}. The space-time
domain boundary ∂E consists of the hyper-surfaces Ω0 := {x ∈ ∂E : x0 = t0},
ΩT := {x ∈ ∂E : x0 = T} and Q := {x ∈ ∂E : t0 < x0 < T}. The space-time
normal vector at ∂E is defined as n := (n0, n̄)T , with n0 the temporal component
and n̄ the spatial component.
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The time interval [t0, T ] is partitioned using the time levels t0 < t1 < ... < T ,
where the nth time interval is defined as In = (tn, tn+1) with length ∆tn =
tn+1 − tn. The space-time domain E is then divided into Nt space-time slabs
En := E ∩ In, with boundaries Ω(tn), Ω(tn+1) and Qn = ∂En/(Ω(tn)∪Ω(tn+1)).

In each space-time slab we introduce a finite element tessellation T n
h with

space-time elements K. The flow domain Ω(tn) is approximated by Ωh(tn),
where Ωh(tn) → Ω(tn) as h → 0, with h the radius of the smallest sphere
completely containing the largest space-time element. The domain Ωh(tn) is
divided into Nn non-overlapping spatial elements K(tn). At tn+1 the spatial
elements K(tn+1) are obtained by mapping the vertices of the elements K(tn)
to their position at tn+1. The space-time elements K ∈ T n

h are then obtained
by interpolation in time between the elements K(tn) and K(tn+1), such that
En

h = ∪K∈T n
h
K → En as h → 0. Furthermore, each space-time element Kn

j can

be mapped to the master element K̂ ⊂ Rq+1 by an isoparametric mapping GK.

The element boundary ∂Kn
j , which is the union of open faces of Kn

j , consists

of three parts: Kj(t
+
n ) = limǫ↓0 Kj(tn + ǫ), Kj(t

−
n+1) = limǫ↓0 Kj(tn+1 − ǫ) and

Qn
j = ∂Kn

j /(Kj(t
+
n )∪Kj(t

−
n+1)). Define the grid velocity v ∈ Rq as v = ∆x̄/∆t.

The outward space-time normal vector at an element boundary point on ∂Kn
j

is given by:

n =





(1, 0̄) at Kj(t
−
n+1),

(−1, 0̄) at Kj(t
+
n ),

(−vkn̄k, n̄) at Qn
j ,

(7.15)

where 0̄ ∈ Rq. Note that since the space-time normal vector n has length one,
the space component n̄ of the space-time normal has a length |n̄| = 1/

√
1 + v · v.

It can be convenient to split the element boundaries into separate faces. We
therefore define interior and boundary faces. An interior face is shared by two
neighboring elements Kn

i and Kn
j , such that Sn

ij = Qn
i ∩ Qn

j , and a boundary
face is defined as Sn

Bj
= ∂En ∩ Qn

j . The set of interior faces in time slab In is
denoted by Sn

I and the set of all boundary faces by Sn
B . Furthermore, we define

the time-faces as Sn+1
Kj

= Kn
j ∩Kn+1

j where S0
Kj

= K0
j∩Ω0 and ST

Kj
= KT

j ∩ΩT . In

space-time slab En
h , the total set of faces is denoted by S̄n = Sn

I ∪Sn
B∪Sn+1

K ∪Sn
K .

The total set of space-faces is denoted by Sn
IB = Sn

I ∪ Sn
B .

7.2.2 Function spaces and trace operators

We consider approximations of U(x, t) and functions V (x, t) in the finite element
space Wh, which is defined as:

Wh =
{
W ∈ (L2(Eh))m : W |K ◦ GK ∈ (P p(K̂))m, ∀K ∈ Th

}
,
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where L2(Eh) is the space of square integrable functions on Eh and P p(K̂) denotes
the space of polynomials of degree at most p on the reference element K̂. Here
m denotes the dimension of U . We will also use the space

Vh =
{
V ∈ (L2(Eh))m×q : V |K ◦ GK ∈ (P p(K̂))m×q, ∀K ∈ Th

}
.

The trace of a function f ∈ Wh at the element boundary ∂K is defined as
fL = limǫ↓0 f(x − ǫnL) with nL the unit outward space-time normal at ∂K.
The outward normal vector of the adjacent element KR is denoted as nR with
nR = −nL. When only the space components of the outward normal vector are
considered we will use the notation n̄L. A function f ∈ Wh has a double valued
trace at element boundaries ∂K. The traces of a function f at an internal face
S = K̄L∩K̄R are denoted by fL and fR. The jump of f at an internal face in the
direction k of a Cartesian coordinate system is defined as [[f ]]k = fLnL

k +fRnR
k .

The average of f at an internal face is defined as {{f}} = 1
2 (fL + fR). The jump

operator satisfies the following product rule on all interior faces for ∀g ∈ Wh

and ∀f ∈ Wh, which can be proven by direct verification:

[[gifik]]k = {{gi}}[[fik]]k + [[gi]]k{{fik}}. (7.16)

Element boundary integrals are related to face integrals by:

∑

n

( ∑

K∈T n
h

∫

∂K

gL
i fL

iknL
k d∂K

)
=

∑

n

( ∑

S∈Sn
I

∫

S

[[gifij ]]j dS +
∑

S∈Sn
B

∫

S

gL
i fL

ij n̄
L
j dS +

∑

S∈Sn
K

∫

S

[[gifi0]]0 dS
)

, (7.17)

with k = 0, ..., q, j = 1, ..., q, i = 1, ...,m. From now on, for notational purposes,
we use the same notation for interior and boundary faces by introducing ghost
values UR at the domain boundary.

7.2.3 Weak formulation

We now introduce the space-time DG weak formulation of (7.9). The commonly
used derivation of the space-time DG weak formulation is well known and there-
fore not repeated here. Instead, we refer to [8, 13, 41, 79]. The space-time DG
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weak formulation of (7.9) is given by: Find a U ∈ Wh such that for all V ∈ Wh:

0 =
∑

n

(
−

∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik(U) − Aikrs(U)Ur,s)

)
dK

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i ){{Fik(U) − vkUi}}n̄L
k dS

−
∑

S∈Sn
IB

∫

S

[[Vi]]k{{Aikrs(U)(Ur,s + Rrs)}} dS

−
∑

S∈Sn
IB

∫

S

{{Vi,kAikrs(U)}}[[Ur]]s dS +
∑

S∈Sn
K

∫

S

[[Vi]]0{{Ui}} dK

)
,

(7.18)

with the lifting operator Rrs defined as: Find an R ∈ Vh such that for all
ϕ ∈ Vh:

∑

K∈T n
h

∫

K

ϕrsRrs dK =
∑

S∈Sn
IB

∫

S

[[ϕrs(Ûr − Ur)]]s dS. (7.19)

Note that in the derivation of the lifting operator by Brezzi et al. [13], the
numerical flux Û was introduced.

7.3 Derivation based on Borel measures

Using the Borel measures from Section 7.1, we introduce the definitions of gen-
eralized DG flux derivatives and generalized DG diffusion terms. We then derive
a new weak formulation for (7.9). Two criteria are imposed on the weak for-
mulation for the hyperbolic part of (7.9), namely, the scheme must be locally
element wise conservative, and second, we require causality in time. We will
also show, that by introducing a definition of the generalized DG derivative,
it is possible to obtain exactly weak formulation (7.18). As mentioned already
in the introduction, the space DG derivation follows analogously to that of the
space-time DG derivation and is therefore omitted.
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7.3.1 Generalized DG flux derivatives

Using Theorem 7.1.2, generalized DG flux derivatives, denoted by D̃DG
k Fik(U),

k = 0, ..., q, i = 1, ...,m, satisfy:

∫

Eh

ViD̃
DG
k Fik(U) dEh =

∑

n

( ∑

K∈T n
h

∫

K

ViFik(U),k dK −
∑

S∈S̄n

∫

S

V̂i[[Fik(U)]]k dS
)

=

∫

Eh

Vi(Fik(U),k + Rf
i ) dEh, ∀V ∈ Wh,

(7.20)

where Rf ∈ Rm is the global lifting operator defined as: Find an Rf ∈ Wh,
such that for all V ∈ Wh :

∫

Eh

ViRf
i dEh = −

∑

n

( ∑

S∈S̄n

∫

S

V̂i[[Fik(U)]]k dS
)

. (7.21)

It follows that D̃DG
k Fik(U) = Fik(U),k + Rf

i a.e. on Eh. Note that in (7.20)

and (7.21) we still need to define V̂ . This will be discussed in Section 7.3.3.

7.3.2 Generalized DG diffusion terms

Using Theorem 7.1.1, the generalized DG diffusion term, denoted by
(Aikrs(U)Ur,s)

DG, with k, s = 1, ..., q, i, r = 1, ...,m, satisfies:

∫

Eh

ϕik(Aikrs(U)Ur,s)
DG dEh =

∑

n

( ∑

K∈T n
h

∫

K

ϕik dµA
ik(Kj) +

∑

S∈Sn
IB

∫

S

ϕ̂ik dµA
ik(S)

)

=
∑

n

( ∑

K∈T n
h

∫

K

ϕikAikrs(U)Ur,s dK

+
∑

S∈Sn
IB

∫

S

ϕ̂ik

( ∫ 1

0

Aikrs(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

s

)
dS

)

=

∫

Eh

ϕik(Aikrs(U)Ur,s + RA
ik) dEh, ∀ϕ ∈ Vh,

(7.22)
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where RA ∈ Rm×q is the global lifting operator defined as: Find an RA ∈ Vh,
such that for all ϕ ∈ Vh :

∫

Eh

ϕikRA
ik dEh =

∑

n

( ∑

S∈Sn
IB

∫

S

ϕ̂ik

(∫ 1

0

Aikrs(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

s

)
dS

)
.

(7.23)

It follows that (Aikrs(U)Ur,s)
DG = Aikrs(U)Ur,s + RA

ik a.e. on Eh. In (7.22)
and (7.23) we still require the definition of ϕ̂ik. This will be discussed in Sec-
tion 7.3.3.

7.3.3 Space-time discontinuous Galerkin weak formulation

We now derive the space-time discontinuous Galerkin finite element weak for-
mulation. In a discontinuous Galerkin finite element framework we do not de-
termine the weak formulation for (7.9), but for:

D̃DG
k F̃ik(U) = 0, x ∈ Rq+1, x0 > 0, k = 0, 1, ..., q, (7.24)

with F̃ ∈ Rm×(q+1) given by:

F̃ik(U) =

{
Ui, if k = 0,

Fik(U) − (Aikrs(U)Ur,s)
DG, if k = 1, ..., q.

(7.25)

We omit the tilde notation from now on.

A new weak formulation based on generalized DG flux derivatives
and diffusion terms

Multiplying (7.24) by a test function V ∈ Wh, integrating over the domain Eh

and using the definition of the generalized DG flux derivatives (7.20), we obtain:

0 =
∑

n

( ∑

K∈T n
h

∫

K

ViFik(U),k dK −
∑

S∈S̄n

∫

S̄

V̂i[[Fik(U)]]k dS̄
)

, k = 0, ..., q.

(7.26)
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Using (7.25), we can rewrite (7.26) as:

0 =
∑

n

( ∑

K∈T n
h

∫

K

Vi(Ui,0 + Fik(U),k − (Aikrs(U)Ur,s)
DG
,k ) dK

−
∑

S∈Sn
K

∫

S

V̂i[[Ui]]0 dS −
∑

S∈Sn
IB

∫

S

V̂i[[Ui]]0 dS

−
∑

S∈Sn
IB

∫

S

V̂i[[Fik(U) − (Aikrs(U)Ur,s)
DG]]k dS

)

=
∑

n

( ∑

K∈T n
h

∫

K

Vi(Ui,0 + Fik(U),k − (Aikrs(U)Ur,s)
DG
,k ) dK

−
∑

S∈Sn
IB

∫

S

V̂i[[Fik(U) − vkUi − (Aikrs(U)Ur,s)
DG]]k dS

−
∑

S∈Sn
K

∫

S

V̂i[[Ui]]0 dS
)

, k = 1, ..., q,

(7.27)

where we used the definition of the space-time normal (7.15). We are left with
choosing the numerical flux for the test function V in (7.27) and the test func-
tion for the definition of (Aikrs(U)Ur,s)

DG (see (7.22) and (7.23)). These test
functions belong to different spaces (V ∈ Wh and ϕ ∈ Vh) and will also be
defined differently. We start with the test function V ∈ Wh. The choice for the
numerical flux of the test function V ∈ Wh follows from requiring that on an
element the formulation must be conservative.

Theorem 7.3.1. If the numerical flux V̂ for the test function V ∈ Wh in
(7.27) is defined as V̂ = {{V }}, then the DG formulation (7.27) will be locally
conservative on an element.

Proof. Integrating by parts the volume integral in (7.27) we obtain:

0 =
∑

n

(
−

∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik(U) − (Aikrs(U)Ur,s)

DG)
)
dK

+
∑

K∈T n
h

∫

∂K

V L
i

(
UL

i nL
0 + (FL

ik − (AikrsUr,s)
DG)n̄L

k

)
d(∂K)

−
∑

S∈Sn
IB

∫

S

V̂i[[Fik(U) − vkUi − (Aikrs(U)Ur,s)
DG]]k dS

−
∑

S∈Sn
K

∫

S

V̂i[[Ui]]0 dS
)

,

(7.28)
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where FL,R
ik = Fik(UL,R). Using relations (7.16) and (7.17) and the definition

of the normal vector n (7.15), the element boundary integral in (7.28) becomes:

∑

n

( ∑

K∈T n
h

∫

∂K

V L
i

(
UL

i nL
0 + (FL

ik − (AikrsUr,s)
DG)n̄L

k

)
d(∂K)

)

=
∑

n

( ∑

S∈Sn
IB

∫

S

[[Vi(Fik(U) − (Aikrs(U)Ur,s)
DG)]]k dS

+
∑

S∈Sn
IB

∫

S

[[ViUi]]0 dS +
∑

S∈Sn
K

∫

S

[[ViUi]]0 dS
)

=
∑

n

( ∑

S∈Sn
IB

∫

S

[[Vi(Fik(U) − vkUi − (Aikrs(U)Ur,s)
DG)]]k dS +

∑

S∈Sn
K

∫

S

[[ViUi]]0 dS
)

=
∑

n

( ∑

S∈Sn
IB

∫

S

(
[[Vi]]k{{Fik(U) − vkUi − (Aikrs(U)Ur,s)

DG}}

+ {{Vi}}[[Fik(U) − vkUi − (Aikrs(U)Ur,s)
DG]]k

)
dS

+
∑

S∈Sn
K

∫

S

[[Vi]]0{{Ui}} + {{Vi}}[[Ui]]0 dS
)

.

(7.29)

Combining (7.28) and (7.29) we obtain:

0 =
∑

n

(
−

∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik(U) − (Aikrs(U)Ur,s)

DG)
)
dK

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i ){{Fik(U) − vkUi}}n̄L
k dS

−
∑

S∈Sn
IB

∫

S

[[Vi]]k{{(Aikrs(U)Ur,s)
DG}} dS +

∑

S∈Sn
K

∫

S

[[Vi]]0{{Ui}} dS

+
∑

S∈Sn
IB

∫

S

(
{{Vi}} − V̂i

)
[[Fik(U) − vkUi − Aikrs(U)UDG

r,s ]]k dS

+
∑

S∈Sn
K

∫

S

(
{{Vi}} − V̂i

)
[[Ui]]0 dS

)
.

(7.30)

The DG formulation is conservative if the last two integrals in (7.30) are zero.
This can be achieved by taking V̂i = {{Vi}}. ¤
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Consider again (7.27). Integrate by parts the volume integral and using Theo-
rem 7.3.1 to choose the numerical flux for the test function V ∈ Wh, we obtain:

0 =
∑

n

(
−

∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik(U) − (Aikrs(U)Ur,s)

DG)
)
dK

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i ){{Fik(U) − vkUi}}n̄L
k dS

−
∑

S∈Sn
IB

∫

S

[[Vi]]k{{(Aikrs(U)Ur,s)
DG}} dS +

∑

S∈Sn
K

∫

S

[[Vi]]0{{Ui}} dS
)

,

(7.31)

where we used relation (7.15) for the time component of the space-time normal
vector and relations (7.16) and (7.17) to write the element boundary integrals as
face integrals. To use the definition of the generalized DG diffusion term (7.22)
and (7.23), we have to choose ϕik = Vi,k ∈ Vh. Then, from Theorem 7.3.1, it
follows directly that ϕ̂ = {{ϕ}} and we obtain:

0 =
∑

n

(
−

∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik(U) − Aikrs(U)Ur,s)

)
dK

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i ){{Fik(U) − vkUi}}n̄L
k dS +

∑

S∈Sn
K

∫

S

[[Vi]]0{{Ui}} dS

−
∑

S∈Sn
IB

∫

S

[[Vi]]k{{Aikrs(U)Ur,s + RA
ik}} dS

+
∑

S∈Sn
IB

∫

S

{{Vi,k}}
( ∫ 1

0

Aikrs(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτn̄L

s

)
dS

)
.

(7.32)

The DG formulation is generally numerically unstable and a stabilizing term is
added to the central flux {{Fik−vkUi}}n̄L

k , together forming an upwind numerical
flux: Hi = ({{Fik−vkUi}}+Hstab

ik )n̄L
k . Furthermore, the central flux on the faces

SK is replaced by an upwind flux, naturally ensuring causality in time:

Û =

{
UL if nL

0 = 1,

UR if nL
0 = −1.

We obtain now the DG weak formulation: Find a U ∈ Wh such that for all
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V ∈ Wh:

0 = −
∑

K∈T n
h

∫

Kj

(
Vi,0Ui + Vi,k(Fik(U) − Aikrs(U)Ur,s)

)
dK

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i )Hi dS −
∑

S∈Sn
IB

∫

S

[[Vi]]{{Aikrs(U)Ur,s + RA
ik}} dS

+
∑

S∈Sn
IB

∫

S

{{Vi,k}}
( ∫ 1

0

Aikrs(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτn̄L

s

)
dS

+
∑

K∈T n
h

( ∫

Kj(t
−

n+1)

V L
i UL

i dK −
∫

Kj(t
+
n )

V L
i UR

i dK

)
,

(7.33)

where we used

∑

S∈Sn
K

∫

S

[[Vi]]0Ûi dS =
∑

K∈T n
h

(∫

Kj(t
−

n+1)

V L
i UL

i dK−
∫

Kj(t
+
n )

V L
i UR

i dK

)
, (7.34)

which follows from (7.17). Due to the introduction of the upwind flux at the
faces SK , each space-time slab only depends on the previous space-time slab so
that the summation over all space-time slabs in (7.33) could be dropped. We
see that (7.33) and (7.22) still require and expression for the path φ. Since the
terms in which the path is required are diffusion terms, the expression is not
very important: in the limit of the element size tending to zero, there are no
discontinuities in the solution and hence these terms vanish. In the remainder of
this chapter we therefore choose a linear path: φ(τ ;UL, UR) = UL+τ(UR−UL).

Recovering the weak formulation of Brezzi et al. [13]

We show in this section, that using the theory developed in the previous sections
it is possible to recover the weak formulation of Brezzi et al. [13] (7.18). For this,
we introduce the generalized DG derivative. Using Theorem 7.1.1 and (7.12)
with Aikrs = 1, the generalized DG derivative of Ui with respect to x̄k denoted
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by DDG
k Ui, k = 1, ..., q, i = 1, ...,m, satisfies:

∫

Eh

ϕikDDG
k Ui dEh =

∑

n

( ∑

K∈T n
h

∫

K

ϕik dµA
ik(Kj) +

∑

S∈Sn
IB

∫

S

ϕ̂ik dµA
ik(S)

)

=
∑

n

( ∑

K∈T n
h

∫

K

ϕikUi,k dK −
∑

S∈Sn
IB

∫

S

ϕ̂ik[[Ui]]k dS
)

=
∑

n

( ∑

K∈T n
h

∫

K

ϕikUi,k dK −
∑

S∈Sn
IB

∫

S

{{ϕik}}[[Ui]]k dS
)

=

∫

Eh

ϕik(Ui,k + Rd
ik) dEh, ∀ϕ ∈ Vh,

(7.35)

where Rd ∈ Rm×q is the global lifting operator defined as: Find an Rd ∈ Vh,
such that for all ϕ ∈ Vh :

∑

n

( ∑

K∈T n
h

∫

K

ϕikRd
ik dK

)
= −

∑

n

( ∑

S∈Sn
IB

∫

S

{{ϕik}}[[Ui]]k dS
)

. (7.36)

and where we take ϕ̂ik = {{ϕik}}, which is a direct consequence of Theorem 7.3.1.
We see that this definition of the global lifting operator Rd exactly corresponds
to that of R in (7.19) if we choose Û = {{U}}, as was done in [10]. It follows
that DDG

k Ui = Ui,k + Rd
ik a.e. on Eh. Instead of deriving the space-time DG

weak formulation for (7.24), we derive now the weak formulation for

D̃DG
k F̂ik(U) = 0, x ∈ Rq+1, x0 > 0, k = 0, 1, ..., q, (7.37)

with F̂ ∈ Rm×(q+1) given by:

F̂ik(U) =

{
Ui, if k = 0,

Fik(U) − Aikrs(U)DDG
s Ur, if k = 1, ..., q.

(7.38)

The steps of deriving the weak formulation follows closely those of Section 7.3.3.
We therefore only consider some intermediate results. First, (7.31) becomes

0 =
∑

n

(
−

∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik(U) − Aikrs(U)DDG

s Ur)
)
dK

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i ){{Fik(U) − vkUi}}n̄L
k dS +

∑

S∈Sn
K

∫

S

[[Vi]]0{{Ui}} dS

−
∑

S∈Sn
IB

∫

S

[[Vi]]{{Aikrs(U)DDG
s Ur}} dS

)
.

(7.39)
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Using the definition of the generalized DG derivative (7.35) in (7.39) we obtain
exactly (7.18), hence using the Borel measures, we have recovered the weak
formulation of Brezzi et al. [13]. As in Section 7.3.3 we introduce numerical
fluxes for stabilization purposes. We obtain now the DG weak formulation:
Find a U ∈ Wh such that for all V ∈ Wh:

0 = −
∑

K∈T n
h

∫

K

(
Vi,0Ui + Vi,k(Fik − Aikrs(U)Ur,s)

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

V L
i UL

i dK −
∫

K(t+n )

V L
i UR

i dK

)

+
∑

S∈Sn
IB

∫

S

(V L
i − V R

i )Hi dS −
∑

S∈Sn
IB

∫

S

[[Vi]]k{{Aikrs(U)(Ur,s + Rd
rs)}} dS

−
∑

S∈Sn
IB

∫

S

{{Vi,kAikrs(U)}}[[Ur]]s dS.

(7.40)

The essential difference between (7.33) and (7.40) is the treatment of the non-
linear term Aikrs(U)Ur,s. In (7.33) this term is treated as a nonconservative
product, while in (7.40) Aikrs(U) and Ur,s are treated separately. We remark
that if the tensor A is constant, (7.33) and (7.40) are the same.

7.3.4 A comment on the derivation for hyperbolic PDE’s

We return in this section to the example of the 1D hyperbolic scalar equation
in the introduction of this chapter. We will show that we do not need relation
(7.6) to obtain (7.7).

Let ∂̃DG
x f(u) denote the 1D (inviscid) space-DG equivalent of D̃DG

k Fik(U)
in (7.20). Then, in a DG framework we seek the weak formulation for:

∂tu + ∂̃DG
x f(u) = 0, x ∈ Ωh ⊂ R, t > 0. (7.41)

Multiplying (7.41) by a test function vh ∈ Wh, integrating over the domain Ωh

and using the definition of the 1D space-DG equivalent of the generalized DG
flux derivative (7.20), we obtain (compare with (7.3)):

0 =
∑

K∈Th

∫

K

vh(∂tuh + ∂xf(uh)) dK−
∑

S

∫

S

v̂h(n̄Lf(uL
h ) + n̄Rf(uR

h )) dS,

(7.42)
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∀vh ∈ Wh. Integrate by parts the volume integral and using Theorem 7.3.1 to
define v̂h = 1

2 (vL
h + vR

h ) we find (compare with (7.4)):

0 =
∑

K∈Th

∫

K

(vh∂tuh − f(uh)∂xvh) dK +
∑

K∈Th

∫

∂K

vL
h f(uL

h )n̄L d(∂K)

−
∑

S

∫

S

1
2 (vL

h + vR
h )(n̄Lf(uL

h ) + n̄Rf(uR
h )) dS, ∀vh ∈ Wh. (7.43)

Using equality (7.5), the sum of the boundary integrals in (7.43) can be written
as a sum over face integrals. We immediately see that the underlined term in
(7.43) cancels against the underlined term in (7.5). We automatically get (7.7)
without having to use the (questionable) relation (7.6).

7.4 Test cases

To compare the original weak formulation (7.40) and the new formulation (7.33)
we conduct two test cases. We consider steady state solutions of the compressible
Navier-Stokes equations for a cylinder and a NACA0012 airfoil.

The two dimensional Navier-Stokes equations are given by (7.9) in which

U =




ρ
ρuj

ρE


 , Fk =




ρuk

ρujuk + pδjk

uk(ρE + p)


 , Aikrs(U) =

∂F v
ik(U,∇U)

∂(Ur,s)
,

with j, k = 1, 2, i, r = 1, ..., 4, and where F v
k = [0, τjk, τjkuj − qk]T . Here ρ is

the density, ρuk the momentum density in the Cartesian coordinate direction
xk, ρE the total energy density and δ the Kronecker delta function. For a full
description of the homogeneity tensor Aikrs, we refer to [41]. The total stress
tensor τ is defined as τjk = λui,iδjk+µ(uj,k+uk,j) with i = 1, 2 and the dynamic
viscosity coefficient µ is given by Sutherland’s law:

µ

µ∞
=

T∞ + TS

T + TS

(
T

T∞

)3/2

,

where T is the temperature and TS a constant. The subscript ∞ denotes free-
stream values. The second viscosity coefficient λ is related to µ by the Stokes
hypothesis: 3λ + 2µ = 0. The heat flux vector q has components qk = −κT,k,
with κ the thermal conductivity coefficient. We assume a calorically perfect gas
in thermodynamic equilibrium. The pressure p and internal energy e are given
by the equations of state p = ρRT and e = cvT , where R = cp−cv is the specific
gas constant and cp and cv the specific heats at constant pressure and constant
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volume, respectively. The total energy is the sum of the internal and kinetic
energy: E = e + 1

2uiui. Furthermore, the ratio of specific heats is denoted by
γ = cp/cv.

We non-dimensionalize the Navier-Stokes equations by choosing the recur-
rent set {ρ∞, a∞, T∞, L} in which L is the characteristic length scale of the prob-
lem and a∞ =

√
γp∞/ρ∞ is the free-stream speed of sound. After dimension-

alization, six dimensionless Pi groups can be formed. In the simulations we set
the ratio of specific heats γ = 1.4, the Prandtl number Pr = cpµ∞/κ∞ = 0.72
and the ratio θS = TS/T∞ = 0.4. The remaining three dimensionless groups,
viz. the angle of attack α, free-stream Mach number M∞ = u∞/a∞ and free-
stream Reynolds number Re∞ = ρ∞u∞L/µ∞, are specified depending on the
test case. By definition of our non-dimensionalization, ρ∞ = 1, a∞ = 1, T∞ = 1
and L = 1.

In the implementation of the DG discretization (7.40), to improve the com-
putational efficiency, it is customary to replace the central flux of the diffusion
terms {{Aikrs(U)Ur,s + Rd

ik}} by

{{Aikrs(U)Ur,s + Rd
ik}} ≈ {{Aikrs(U)Ur,s + η(Rd

ik)S}},

in which η is a stabilization constant and where the local lifting operator (Rd
ik)S

is an approximation of the global lifting operator. The local lifting operator is
defined as: Find an (Rd)S ∈ Vh, such that for all ϕ ∈ Vh :

∑

K∈T n
h

∫

K

ϕik(Rd
ik)S dK = −

∫

S

{{ϕik}}[[Ui]]k dS, S ∈ Sn
IB . (7.44)

Note, the local lifting operator is only non-zero in the elements connecting to
the face S. The local lifting operator is related to the global lifting operator
through ∑

K∈T n
h

∫

K

ϕikRd
ik dK =

∑

S∈Sn
IB

∑

K∈T n
h

∫

K

ϕik(Rd
ik)S dK,

see [41]. A similar simplification is applied to (7.33).

7.4.1 Cylinder

We first consider flow around a circular cylinder for a free-stream Mach number
of M∞ = 0.3, a free-stream Reynolds number of Re∞ = 40 and an angle of
attack of α = 0◦. We use a piecewise quadratic polynomial approximation
for the solution. To solve the solution to steady-state we employ three level
multigrid as described in [42]. We use 10 pre- and post-smoothing steps with
20 pseudo-time steps to approximate the solution on the coarsest grid. We
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consider a structured O-type mesh with 128× 128 elements. We considered the
solution after the residual was reduced by six orders. The residual then, for both
discretizations, was 6.2 · 10−8. In Figure 7.1 we show the pressure and Mach
contours as well as the absolute difference between the contours calculated with
the Brezzi method and the new method. In Figure 7.2 we show the pressure
coefficient distribution along the cylinder. The largest absolute difference in
pressure is 1.0 · 10−6 and in Mach number 1.0 · 10−6.

7.4.2 NACA0012 airfoil

Next, we compute the viscous flow past a NACA0012 airfoil for a free-stream
Mach number of M∞ = 0.8, a free-stream Reynolds number of Re∞ = 73 and an
angle of attack of α = 10◦. We use a piecewise linear polynomial approximation
for the solution. To solve the solution to steady-state we employ the EXI-EXV
pseudo-time stepping scheme of [40]. We use a structured C-type mesh with
320 × 80 elements. We considered the solution after the residual was reduced
by three orders. The residual then, for both discretizations, was 3.3 · 10−5. In
Figure 7.3 we show the pressure coefficient distribution along the NACA0012
airfoil. In Figure 7.4 we show the pressure and Mach contours as well as the
absolute absolute difference between the contours calculated with the Brezzi
method and the new method. The largest absolute difference in pressure is
1.2 · 10−4 and in Mach number 1.1 · 10−4.



150 Chapter 7: Alternative derivation of the DG weak formulation

p_h: 0.68 0.7 0.72 0.74 0.76

(a) Pressure contours.

M_h: 0.02 0.08 0.14 0.2 0.26 0.32

(b) Mach contours.

|pbpn|: 0 7.94444E07

(c) Absolute difference pressure con-
tours.

|MbMn|: 0 7.36842E07

(d) Absolute difference Mach contours.

Figure 7.1: Cylinder test case (Re∞ = 40, M∞ = 0.3). Pressure and Mach con-
tours as computed with a piece-wise quadratic polynomial approximation. Left
column: the pressure contours and the absolute difference between the pressure
contours calculated with the Brezzi method and the new formulation given by
(7.33). Right column: the Mach contours and the absolute difference between
the Mach contours calculated with the Brezzi method and the new formulation
(7.33).
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Figure 7.2: Cylinder test case (Re∞ = 40, M∞ = 0.3). Pressure coefficient
distribution along the cylinder.
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Figure 7.3: NACA0012 test case (Re∞ = 73, M∞ = 0.8, α = 10◦). Pressure
coefficient distribution along the NACA0012 airfoil.
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(a) Pressure contours.
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Figure 7.4: NACA0012 test case (Re∞ = 73, M∞ = 0.8, α = 10◦). Pressure
and Mach contours as computed with a piece-wise linear polynomial approxima-
tion. Left column: the pressure contours and the absolute difference between
the pressure contours calculated with the Brezzi method and formulation (7.33).
Right column: the Mach contours and the absolute difference between the Mach
contours calculated with the Brezzi method and formulation (7.33).



CHAPTER 8

Conclusions and recommendations

In this thesis discontinuous Galerkin (DG) finite element methods aimed at
solving hydrodynamic models of two-phase flows were presented. Also, signifi-
cant attention was given to the development of efficient multigrid techniques for
higher order accurate space-time DG discretizations. In this chapter, we draw
conclusions and give recommendations for further research.

Nonconservative products. We have derived weak formulations for space-
and space-time DG finite element methods for nonconservative hyperbolic par-
tial differential equations. We also introduced a numerical flux for systems with
nonconservative products (NCP-flux) suitable for DG finite element methods.

As test cases we considered the shallow water equations with and without
dynamic topography (1D and 2D) and a simplified depth-averaged two-phase
flow model. For the shallow water equations we considered rest flow over discon-
tinuous topography and showed, both numerically and theoretically, that rest
flow is preserved. We also considered subcritical and supercritical flow over a
bump. For these test cases we obtained second and third order accuracy for
suitable basis functions. We also considered more complex test cases: steady
state transcritical flow with a shock, a perturbation of a steady state solution
over a discontinuous topography and a dam breaking problem over a rectan-
gular bump. For the two dimensional shallow water equations with dynamic
topography, we considered hydraulic and morphological transport through a
contraction.
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For the simplified depth-averaged two-phase flow model we also considered
subcritical and supercritical flow over a bump and again obtained second order
accuracy using linear basis functions. A dam-break test case was further used to
investigate the effect of the path on the numerical solution. The effect of the path
was very small in the numerical solutions. Taking different paths did not lead
to relevant changes in the final solution. We did see, however, that for certain
paths it is not sufficient to simply use a two-point Gauss integration scheme
over the whole domain of integration for the path integral, but higher order
integration rules were required. It resulted in significantly larger computational
cost which is undesirable.

Finally, we examined the effect of the path across a contact wave and saw
that we could not capture the stationary contact discontinuity. By making the
mesh such that the contact wave falls within an element we did see that the
numerical error made is a full order smaller than if the contact wave falls ex-
actly on a face. The numerical dissipation has a regularizing effect decreasing
the effect of the path, but at the moment it is still unclear how to choose the
path in case of a contact discontinuity and this is a topic of further research.
The regularizing effect due to numerical dissipation across shock-waves is much
larger explaining why we did not experience any significant effect of the path in
test cases containing shock waves.

Depth-averaged two-phase flows. Recently, a depth-averaged two-phase
flow model was introduced by Pitman and Le [62] and Le [45] to model shallow
debris flows. We slightly extended this model by including extra friction terms
to simulate turbulent friction. The depth-averaged model contains nonconserva-
tive products which makes it numerically challenging to solve. In Chapter 2 we
developed a discontinuous Galerkin finite element method to deal with noncon-
servative products which we applied in Chapter 4 to solve the depth-averaged
two-phase flow model of Le [45].

The DG finite element discretizations for the depth-averaged model were
verified against steady-state flow solutions over a bump and we obtained sec-
ond order convergence when using linear polynomial approximations. To pre-
vent numerical oscillations, the WENO slope limiter [51] in combination with
Krivodonova’s discontinuity detector [43] was successfully applied. A Riemann
problem solution was shown which could not be solved without the slope limiter
due to severe undershoots.

Furthermore, the effect of the choice of the polynomials and the parameter
γ in the slope limiter were shown. The scheme is robust for a wide range of γ
values, but for accuracy reasons γ should be chosen as small as possible, because
this minimizes the numerical dissipation. Also adding the Hermite polynomials
to the combination of Lagrange and unlimited polynomials increases the amount
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of numerical dissipation. This could be seen in the Riemann problem we inves-
tigated where there was a wave crest that could only be captured using the
Lagrange and unlimited polynomials and setting γ = 1. Certain applications
with strong gradients, however, need more numerical dissipation to avoid over-
and undershoots so that γ may need to be slightly increased. This was neces-
sary e.g. in the validation test case where we used the combination of Lagrange,
Hermite and unlimited polynomials with γ = 10.

Finally, we qualitatively validated the model by showing its ability to cap-
ture the changes in a steady state solution with oblique jumps to a short time
increase in the number of particles and compare with the results obtained by
Akers and Bokhove [2].

Multigrid. In Chapter 5 we have discussed two- and three-level multigrid anal-
ysis for linear algebraic systems resulting from a higher order accurate space-
time DG discretization of the 2D advection-diffusion equation. This allows the
analysis of the convergence rate of a multigrid algorithm, but is also useful
to optimize the smoothers in the multigrid algorithm. Optimal smoothers are
obtained using a constrained optimization process, which finds smoother coeffi-
cients such that the spectral radius of the multigrid error transformation opera-
tor is minimal. This can result in a significant improvement in the convergence
rate of the multigrid algorithm.

The multigrid optimization has been used to obtain improved algorithms
for the solution of the algebraic system resulting from a space-time discontin-
uous Galerkin discretization of the advection-diffusion equation in two space
dimensions. These algorithms have been tested on a two-dimensional problem
containing boundary layers. The optimized algorithms showed a significant im-
provement compared to the original EXI-EXV Runge-Kutta method discussed
in [40, 42]. Apart from optimizing the multigrid smoother, also the solution of
the algebraic system on the coarsest mesh has a big impact on the multigrid
performance.

In Chapter 6 we then compared and analyzed h-, p- and hp-multigrid meth-
ods employing the explicit EXI Runge-Kutta smoother for the solution of the
space-time DG discretization of the Euler and 2D advection-diffusion equa-
tions. From the Fourier theory it is to be expected that hp-multigrid is the
most efficient solution technique of the space-time DG discretization. From the
numerical simulation of subsonic inviscid flow around a NACA0012 airfoil we
saw, however, that the p-multigrid technique shows the best convergence rate.
The p-multigrid is the most efficient due to its rapid residual reduction in the
initial multigrid cycles and the least deterioration of the asymptotic conver-
gence compared to the other multigrid techniques. The h-multigrid method
shows a poor convergence rate after the high-frequency error modes have been
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smoothed. A reason for this could be that at some point the coarse-grid problem
of the h-multigrid algorithm is not solved well with respect to the characteristic
components, as was demonstrated in [88]. This problem may be overcome by
employing an improved coarse grid operator. This has not been studied in the
present work, but is currently under investigation.

In the numerical computations of “real-life” problems, the choice of basis
functions can have a significant effect on the stability of the scheme. For this
reason we also investigated the spectrum of the discretization for different sets of
basis functions. We found that the un-scaled Legendre basis functions allowed
a 5 times larger pseudo-time step than the scaled Legendre basis functions in
which the dimensionless mass-matrix on a uniform grid is the identity matrix.
For this reason we suggest the use of un-scaled Legendre basis functions.

An alternative discontinuous Galerkin derivation. Defining generalized
DG derivatives and DG diffusion terms, based on Borel measures, we have in-
troduced an alternative derivation of the discontinuous Galerkin finite element
weak formulation. Using Borel measures, we have also introduced a new DG
weak formulation for parabolic/elliptic partial differential equations. We per-
formed two numerical simulations of the compressible Navier-Stokes equations
past a cylinder and a NACA0012 airfoil. We saw that with the new DG weak
formulation we obtain very similar results as those obtained using the weak
formulation of Brezzi et al. [13].

Regarding hyperbolic PDE’s, we showed that two commonly used approaches
in deriving the DG weak formulation have their problems. We have introduced
a mathematically more consistent derivation based on Borel measures.

Further research. Hydrodynamic two-phase flow models contain many in-
teresting aspects, e.g., the presence of nonconservative products, stiff source
terms, flows with free-surfaces and a mixture velocity field that has to be di-
vergence free. In this thesis we have only addressed a few of these aspects and
there are still many interesting research topics that need to be addressed before
the DG method can be applied to fully 3D models of two-phase flows.

The incompressible Navier-Stokes equations can provide much insight into
developing efficient DG methods for equations requiring divergence free velocity
fields. The space-time DG method is particularly interesting in this respect since
pseudo-compressibility methods in pseudo-time allow simple implementations of
the method, but also because of its superior ability of dealing with moving grids
needed for free-surface boundary conditions. However, computationally, the
space-time DG method is expensive. We have set an initial step to improve the
efficiency of solving the space-time DG discretization by developing and analyz-
ing h-multigrid methods for 2D advection-diffusion equations. We have shown
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that significant improvements in computational efficiency are possible. More
research needs to be done to develop and analyze h-, p- and/or hp-multigrid
methods specifically for equations requiring divergence free velocity fields. A
good candidate for analysis would be the Oseen equations.

As stepping stones for fully 3D two-phase flow models, intermediate two-
phase flow models can also be of interest and aid in the development. Examples
include the depth-averaged two-phase flow model as addressed in this thesis,
but also hydrostatic 3D two-phase flow models. The depth-averaged model was
used to test the DG finite element method for nonconservative products. A hy-
drostatic 3D two-phase flow model, on the other hand, requires the development
of a DG finite element method capable of dealing with moving boundaries on
deforming meshes. Furthermore, such a model can also be used to test the opti-
mized multigrid techniques for space-time DG discretizations of incompressible
flows.





APPENDIX A

Derivation of the space DGFEM weak
formulation for hyperbolic nonconservative

partial differential equations

In this Appendix we derive a space DGFEM weak formulation for hyperbolic noncon-

servative partial differential equations (see also e.g. Cockburn and Shu [18] for more

on the Runge-Kutta discontinuous Galerkin method for conservative hyperbolic sys-

tems). As opposed to the derivation of the weak formulation for space-time DGFEM

in Chapter 2, we now only consider fixed grids. We first introduce the function spaces

after which we derive the weak formulation.

The space DGFEM weak formulation

Let Ω ⊂ Rq be the bounded flow domain approximated by Ωh such that Ωh → Ω
as h → 0, with h the radius of the smallest sphere completely containing the
largest element Kj . Consider approximations of U(x, t) and the test function
V (x, t) in the finite element space defined as:

Wh =
{
V ∈ (L2(Ωh))m : V |Kj

◦ FK ∈ (P p(K̂))m
}
, (A.1)

where m denotes the dimension of U .
The weak formulation for space DGFEM can be derived in a similar man-

ner as that for space-time DGFEM, except that now we consider fixed grids.
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Before discussing the space DGFEM weak formulation for equations containing
nonconservative products, we first introduce as a reference the space DGFEM
weak formulation for equations in conservative form (see e.g. Tassi, Bokhove
and Vionnet [71]).

Consider partial differential equations in conservative form:

Ui,0 + Hik,k = 0, x̄ ∈ Rq, t > 0, (A.2)

where U ∈ Rm and H ∈ Rm × Rq. Using the approach discussed in Tassi,
Bokhove and Vionnet [71], the space DG formulation for (A.2) can be stated
as:
Find a U ∈ Wh such that for all V ∈ Wh:

0 =
∑

j

∫

Kj

(
ViUi,0 − Vi,kHik

)
dK +

∑

S∈SI

∫

S

[[Vi]]k{{Hik}} dS

+
∑

S∈SB

∫

S

V L
i HL

ikn̄L
k dS. (A.3)

Note that at this point no numerical fluxes have been introduced yet into the
DG formulation. We now continue with equations containing nonconservative
products. Let U ∈ Wh (see (A.1)). We know that the numerical solution is con-
tinuous on an element and discontinuous across a face, so, using Theorem 2.1.2,
U is a weak solution to (2.3) if:

0 =

∫

Ωh

ViUi,0 dK +

∫

Ωh

Vi dµ̄i (A.4)

=
∑

j

∫

Kj

Vi

(
Ui,0 + DikrUr,k

)
dK

+
∑

S∈SI

∫

S

V̂i

( ∫ 1

0

Dikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS, (A.5)

where V ∈ Wh is an arbitrary test function. Furthermore, V̂ is the value (numer-
ical flux) of the test function V on a face S. Note that Theorem 2.1.2 is applied
to nonconservative products in space-time where space and time variables are
not explicitly distinguished. In space DGFEM this is the case and we only need
the space part of the measure in Theorem 2.1.2. This measure is denoted in
(A.4) as µ̄i. The crucial point in obtaining the DG formulation is the choice
of the numerical flux for the test function V . Using Dikr = ∂Fik/∂Ur + Gikr,
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(A.5) can be rewritten as:

0 =
∑

j

∫

Kj

Vi

(
Ui,0 + Fik,k + DikrUr,k

)
dK −

∑

S∈SI

∫

S

V̂i[[Fik]]k dS+

∑

S∈SI

∫

S

V̂i

(∫ 1

0

Dikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k

)
dS (A.6)

We choose the numerical flux for V such that if there exists a Q such that Gikr =
∂Qik/∂Ur, then the DG formulation for the system containing nonconservative
products reduces to the conservative space DGFEM weak formulation given by
(A.3) with Hik = Fik + Qik.

Theorem A.1. If the numerical flux V̂ for the test function V in (A.6) is

defined as V̂ = {{V }}, then the weak formulation (A.6) will reduce to the con-
servative space DGFEM formulation (A.3) when there exists a Q such that
Gikr = ∂Qik/∂Ur so that Hik = Fik + Qik.

Proof Assume there is a Q such that Gikr = ∂Qik/∂Ur. We immediately
see: ∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτ n̄L

k = −[[Qik]]k. (A.7)

Integrating by parts the volume integral in (A.6) we obtain:

0 =
∑

k

∫

Kk

(
ViUi,0 − Vi,k(Fik + Qik)

)
dK +

∑

k

∫

∂Kk

V L
i (FL

ik + QL
ik)n̄L

k d(∂K)

−
∑

S∈SI

∫

S

V̂i[[Fik + Qik]]k dS. (A.8)

We write Hik = Fik + Qik. Use relations (2.12) and (2.13) to write the element
boundary integrals as face integrals:

∑

j

∫

∂Kj

V L
i HL

ikn̄L
k d(∂K) =

∑

S∈SI

∫

S

[[ViHik]]k dS +
∑

S∈SB

∫

S

V L
i HL

ikn̄L
k dS

=
∑

S∈SI

∫

S

(
{{Vi}}[[Hik]]k + (V L

i − V R
i ){{Hik}}n̄L

k

)
dS

+
∑

S∈SB

∫

S

V L
i HL

ikn̄L
k dS.

(A.9)
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Combining (A.8) and (A.9) we obtain:

0 =
∑

j

∫

Kj

ViUi,0−Vi,kHik dK+
∑

S∈SI

∫

S

(
{{Vi}}[[Hik]]k+(V L

i −V R
i ){{Hik}}n̄L

k

)
dS

+
∑

S∈SB

∫

S

V L
i HL

ikn̄L
k dS −

∑

S∈SI

∫

S

V̂i[[Hik]]k dS. (A.10)

The term {{Vi}}[[Hik]]k is set to zero in the space DG formulation for conserva-
tive systems arguing that the formulation must be conservative. For a general
nonconservative system we can not use this argument. Instead, we note that
by taking V̂ = {{V }} on the faces S, the contribution

∫
S
{{Vi}}[[Hik]]k dS cancels

with −
∫
S

V̂i[[Hik]]k dS. We now obtain the weak formulation given by (A.3). ¤

Theorem A.1 allows us to finalize the derivation of the DGFEM weak formula-
tion, similar to the space-time DG formulation, to:
Find a U ∈ Wh such that for all V ∈ Wh:

0 =
∑

j

∫

Kj

(
ViUi,0 − Vi,kFik + ViGikrUr,k

)
dK +

∑

S

∫

S

(V L
i − V R

i )P̂nc
i dS+

∑

S

∫

S

{{Vi}}
( ∫ 1

0

Gikr(φ(τ ;UL, UR))
∂φr

∂τ
(τ ;UL, UR) dτn̄L

k

)
dS. (A.11)

Note that we combined the fluxes at interior and boundary faces by using a
ghost value UR at the boundary.
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The three-dimensional two-phase flow model

In this Appendix we present the three-dimensional two-phase flow model as derived by

Jackson [38]. By depth-averaging this model, Pitman and Le [62] and Le [45] derived

a depth-averaged two-phase flow model for shallow two-phase flows.

The three-dimensional two-phase flow model

Assume that the only fluid’s stress is the fluid’s pressure. Furthermore, the
densities ρf and ρs of both phases are assumed to be constant. The three-
dimensional model consists of two continuity equations and two momentum
equations. To write the equations in compact form, we use the summation
convention on repeated indices. The continuity equations are given by:

∂t((1 − α)) + ∂k((1 − α)uk) = 0,

∂t(α) + ∂k(αvk) = 0,
(B.1)

and the momentum equations are:

∂t((1 − α)ρfui) + ∂k

(
(1 − α)ρfuiuk

)
= −(1 − α)∂k(δikpf ) − FD

i + (1 − α)ρfgi,

∂t(αρsvi) + ∂k(αρsvivk + T s
ik) = −α∂k(δikpf ) + FD

i + αρsgi.

(B.2)

Here, i, k = 1, 2, 3. The Cartesian coordinate system we consider is at an angle
θ with respect to the horizontal (see Figure 4.1). In these equations α is the
particle volume fraction, u the fluid velocity vector, v the solids velocity vector,
~g the gravity vector, T s the solids stress tensor, pf is the fluid pressure, FD the
generalized drag force and δ represents the Kronecker delta function.
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Summary

The first research topic in this thesis is the development of space- and space-
time discontinuous Galerkin (DG) finite element methods for hydrodynamic
models of shallow (liquid-solid) two-phase flows. Many interesting aspects of
these models arise, e.g., the presence of nonconservative products, stiff source
terms, flows with free-surfaces and, in the three-dimensional (3D) model, the
velocity field of the two-phase mixture has to be divergence free. This thesis
provides some of the tools which are necessary for solving hydrodynamic models
of two-phase flows with space- and/or space-time DG finite element methods.

An important research topic is nonconservative products which are present
in many two-phase flow models. A large part of this thesis is therefore devoted
to developing a general method which can be applied to partial differential equa-
tions containing nonconservative products. For this, we combine the theory of
Dal Maso, LeFloch and Murat, in which a definition is given for nonconserva-
tive products even where the solution field is discontinuous. This theory also
provides the mathematical foundation for a new DG finite element method. For
this new DG method, we show standard (p + 1)-order convergence results using
pth order basis-functions for test-cases of which we know the exact solution. We
also show its ability to deal with more complex test cases. Finally, we apply
the method to a depth-averaged two-phase flow model of which the numerical
results are qualitatively validated against results obtained from a laboratory
experiment.

The second topic of this thesis is multigrid. The use of multigrid is of great
importance to obtain efficient solvers for fully 3D two-phase flow models. As an
initial step to improve the efficiency of solving the space-time DG discretization,
we have developed, analyzed and tested optimized multigrid methods using



explicit Runge-Kutta type smoothers for the 2D advection-diffusion equation.
Many physical models describing fluid motion contain second (and higher)

order derivatives. Obtaining a DG discretization for these higher order deriva-
tives is non-trivial and many different DG methods exist to deal with these
terms. As final topic of this thesis we introduce an alternative derivation of DG
methods based on Borel measures. This alternative derivation gives a consistent
treatment of derivative terms by assigning a measure to derivatives when the
flow field is discontinuous. We investigate the various DG weak formulations
arising from this technique by considering the 2D compressible Navier-Stokes
equations for the viscous flows over a cylinder and a NACA0012 airfoil.



Samenvatting

Het eerste onderwerp van onderzoek in dit proefschrift is het ontwikkelen van
ruimte- en ruimte-tijd discontinue Galerkin (DG) eindige elementen methodes
voor hydrodynamische modellen voor ondiepe (vloeistof-vaste deeltjes) twee-
fasen stromingen. Deze modellen bevatten veel interessante aspecten, zoals de
aanwezigheid van niet-conservatieve produkten, stijve bron termen, stromingen
met vrije oppervlaktes, en in het drie dimensionale (3D) model moet het snel-
heidsveld van het twee-fasen mengsel divergentie vrij zijn. In dit proefschrift
ontwikkelen we een aantal technieken die nodig zijn voor het kunnen oplossen
van hydrodynamische modellen voor twee-fasen stromingen met behulp van de
ruimte- en/of ruimte-tijd DG eindige elementen methode.

Niet-conservative produkten, die voorkomen in veel twee-fasen modellen, zijn
een belangrijk onderzoeksonderwerp. Een groot gedeelte van dit proefschrift is
daarom gewijd aan het ontwikkelen van een algemene methode die toegepast kan
worden op partiële differentiaal vergelijkingen die niet-conservatieve produkten
bevatten. Hiervoor combineren we de theorie van Dal Maso, LeFloch en Mu-
rat, waarin een definitie wordt gegeven voor niet-conservatieve produkten zelfs
daar waar het oplossingsveld discontinue is. Deze theorie legt het wiskundige
fundament voor een nieuwe DG eindige elementen methode. Voor deze nieuwe
methode laten we standaard (p + 1)-orde convergentie resultaten zien bij het
gebruik van pde orde basis-functies voor problemen waarvan de exacte oplossing
bekend is. We laten ook zien dat deze methode geschikt is voor complexere
test cases. Uiteindelijk passen we deze methode toe op een diepte-gemiddeld
twee-fasen model waarbij de resultaten kwalitatief gevalideerd worden met ex-
perimenten uitgevoerd in het laboratorium.

Het tweede onderwerp van dit proefschrift is multigrid. Het gebruik van



multigrid, of andere efficiënte oplosmethodes, is van groot belang voor het
oplossen van de volledige 3D twee-fasen modellen. Als eerste stap om de ef-
ficiëntie van de methode te verbeteren voor het oplossen van de ruimte-tijd
DG discretizatie, hebben we geoptimaliseerde multigrid methodes met expli-
ciete Runge-Kutta smoothers ontwikkeld, geanalyseerd en getest voor de 2D
advectie-diffusie vergelijking.

Veel fysische modellen die stromingen van vloeistoffen beschrijven, bevat-
ten tweede (of hogere) orde afgeleides. Het afleiden van een DG discretizatie
voor deze hogere orde afgeleides is niet triviaal en er bestaan vele verschillende
DG methodes voor het omgaan met deze termen. Tenslotte introduceren wij in
dit proefschrift een alternatieve afleiding voor DG methodes gebaseerd op Borel
maten. Deze alternatieve afleiding geeft een consistente manier voor het omgaan
met afgeleides door een maat toe te kennen aan afgeleides als het stromingsveld
discontinue is. Wij onderzoeken de verschillende DG zwakke formuleringen die
onstaan door deze techniek door de 2D compressibele Navier-Stokes vergelijkin-
gen te beschouwen voor visceuze stromingen om een cylinder en een NACA0012
vliegtuigvleugel.
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